+0  
 
+1
37
3
avatar+2347 

Here's a question that I came across:

 

Trapezoid \(ABCD\) has vertices \(A(-1,0)\)\(B(0,4)\)\(C(m,4)\)  and \(D(k,0)\), with  \(m>0\) and \(k>0\) . The line \(y = -x + 4\) is perpendicular to the line containing side \(CD\), and the area of trapezoid \(ABCD\) is 34 square units. What is the value of \(k\)?

tertre  Mar 30, 2018
Sort: 

3+0 Answers

 #1
avatar+85759 
+2

C  = (m, 4)

D   = (k, 0 )

Slope of line containing CD

(4 - 0)

_____   =  1

 m  - k

 

4  =  m  - k

m - k  = 4     (1)  

 

Height of trapezoid, H,  = 4

 

Area  =  (1/2)H * (sum of the bases)

34 = (1/2)* 4  (sum of the bases)

34   = 2(sum of the bases)

17  =  sum of the bases

 

But   the length of the bottom base  is    k + 1  and the length of the top base is m

So

 

(k + 1) +  m  =  17

m + k  = 16     (2)

 

And using (1)  and (2)   and we have that

 

m - k  =  4

m + k  =  16    add  these

 

2m  =  20

m  =  10

 

So....k  = 6

 

Note....the equation of the perpendicular line is y  = x - 6 

 

Here's a pic :

 

 

 

cool cool cool

CPhill  Mar 30, 2018
 #2
avatar+2347 
+2

Wow! Thanks so much, CPhill! Great job! Fabulous!

tertre  Mar 30, 2018
 #3
avatar+85759 
0

Thanks, tertre   !!!!

 

 

cool cool cool

CPhill  Mar 30, 2018

25 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details