We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# A question from a friend

+2
274
3

Here's a question that I came across:

Trapezoid \(ABCD\) has vertices \(A(-1,0)\)\(B(0,4)\)\(C(m,4)\)  and \(D(k,0)\), with  \(m>0\) and \(k>0\) . The line \(y = -x + 4\) is perpendicular to the line containing side \(CD\), and the area of trapezoid \(ABCD\) is 34 square units. What is the value of \(k\)?

Mar 30, 2018

### 3+0 Answers

#1
+2

C  = (m, 4)

D   = (k, 0 )

Slope of line containing CD

(4 - 0)

_____   =  1

m  - k

4  =  m  - k

m - k  = 4     (1)

Height of trapezoid, H,  = 4

Area  =  (1/2)H * (sum of the bases)

34 = (1/2)* 4  (sum of the bases)

34   = 2(sum of the bases)

17  =  sum of the bases

But   the length of the bottom base  is    k + 1  and the length of the top base is m

So

(k + 1) +  m  =  17

m + k  = 16     (2)

And using (1)  and (2)   and we have that

m - k  =  4

m + k  =  16    add  these

2m  =  20

m  =  10

So....k  = 6

Note....the equation of the perpendicular line is y  = x - 6

Here's a pic :    Mar 30, 2018
#2
+2

Wow! Thanks so much, CPhill! Great job! Fabulous!

tertre  Mar 30, 2018
#3
0

Thanks, tertre   !!!!   CPhill  Mar 30, 2018