+0  
 
0
128
1
avatar+2766 

In each blank below a single digit is inserted such that the following six three-digit numbers, in this order, form an arithmetic sequence:
\( 1 \,\underline{\hspace{9pt}}\, \,\underline{\hspace{9pt}}\, \;\;,\;\; \,\underline{\hspace{9pt}}\, \,\underline{\hspace{9pt}}\, 9 \;\;,\;\; 2 \,\underline{\hspace{9pt}}\, 2 \;\;,\;\; \,\underline{\hspace{9pt}}\, 6 \,\underline{\hspace{9pt}}\, \;\;,\;\; 2 \,\underline{\hspace{9pt}}\, \,\underline{\hspace{9pt}}\, \;\;,\;\; \,\underline{\hspace{9pt}}\, 3 \,\underline{\hspace{9pt}} \)
What is the value of the next number in the sequence?

tertre  Jan 23, 2018
 #1
avatar+87537 
+1

1 _ _ , _ _9, 2 _ 2 ,  _6_ , 2_ _ , _3_

 

The last number of the common difference must end in 3

And this must be a 2 digit number

 

So....the first number must end in 6

The the 4th number must be 265

 

So..... the 5th number  must end in 8 

And the last digit  of the last term must end in  1  [ and begin with 3 ]

 

Putting all this together  we have that

 

265  + 2d  =  331

 

2d  = 66   ⇒  d = 33

 

So  the first term must be  265 - 3 (66)  =  166

 

So....the series appears to be     166, 199, 232, 265, 298, 331

 

And the  generating  formula for the nth term is   166 + 33 (n - 1)

 

 

cool cool cool

CPhill  Jan 23, 2018
edited by CPhill  Jan 24, 2018

11 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.