+0

# A sequence

0
557
1
+645

A sequence of positive integers with $$a_1 = 1$$  and a9 + a10 =646 is formed so that the first three terms are in geometric progression, the second, third, and fourth terms are in arithmetic progression, and, in general, for all n >= 1, the terms  a_{2-n}, a_{2n}, a_{2n+1} are in geometric progression, and the terms a_{2n}, a_{2n+1}, a_{2n+2} and  are in arithmetic progression. Let a_n be the greatest term in this sequence that is less than 1000. Find a_n.

Feb 9, 2018

#1
+24995
+1

I assume the question is:

$$\mathbf{\text{A sequence of positive integers with a_1=1 and a_9+a_{10}=646 is formed \\ so that the first three terms are in geometric progression, \\ the second, third, and fourth terms are in arithmetic progression, \\ and, in general, for all n\ge1, \\ the terms a_{2n-1}, a_{2n}, a_{2n+1} are in geometric progression, \\ and the terms a_{2n}, a_{2n+1}, and a_{2n+2} are in arithmetic progression. \\ Let a_n be the greatest term in this sequence that is less than 1000. Find  a_n .}}$$

Let AP = arithmetic progression,

Let GP = geometric progression

$$\text{AP Formula:}\\ \begin{array}{|llcll|} \hline \text{ t = term }\\ \text{ i,j,k =  indices}\\\\ t_i(j-k) + t_j(k-i) + t_k(i-j) = 0 \\\\ & i = 2n & t_i = a_{2n} \\ & j = 2n+1 & t_j = a_{2n+1} \\ & k = 2n+2 & t_k = a_{2n+2} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline t_i(j-k) + t_j(k-i) + t_k(i-j) &=& 0 \\ a_{2n}(2n+1-(2n+2)) + a_{2n+1}(2n+2-2n) + a_{2n+2}(2n-(2n+1)) &=& 0 \\ \mathbf{-a_{2n} + 2a_{2n+1} - a_{2n+2}} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}$$

$$\text{GP Formula:}\\ \begin{array}{|llcll|} \hline \text{ t = term }\\ \text{ i,j,k =  indices}\\\\ t_i^{j-k} \times t_j^{k-i} \times t_k^{i-j} = 1 \\\\ & i = 2n-1 & t_i = a_{2n-1} \\ & j = 2n & t_j = a_{2n} \\ & k = 2n+1 & t_k = a_{2n+1} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline t_i^{j-k} \times t_j^{k-i} \times t_k^{i-j} = 1 \\\\ a_{2n-1}^{2n-(2n+1)} \times a_{2n}^{2n+1-(2n-1)} \times a_{2n+1}^{2n-1-(2n)} = 1 \\\\ \mathbf{a_{2n-1}^{-1} \times 2a_{2n}^{2} \times a_{2n+1}^{-1} } &\mathbf{=}& \mathbf{1} \\ \hline \end{array}$$

So we have:

$$\begin{array}{|lrcll|} \hline (1) & \mathbf{a_{2n+2}} &\mathbf{=}& \mathbf{2a_{2n+1} -a_{2n} } \\ (2) & \mathbf{a_{2n+1} } &\mathbf{=}& \mathbf{\dfrac{ a_{2n}^{2} }{a_{2n-1} } } \\ \hline \end{array}$$

$$\mathbf{a_1=1 }\\ \begin{array}{|rcll|} \hline a_3 &=& \dfrac{a_2^2}{a_1} \quad a_1 = 1 & | \quad \text{ Formula (2)} \\ \mathbf{a_3} & \mathbf{=} & \mathbf{ a_2^2 } \\ \hline a_4 &=& 2a_3-a_2 \quad a_3 = a_2^2 & | \quad \text{ Formula (1)} \\ &=& 2a_2^2-a_2 \\ \mathbf{a_4} & \mathbf{=} & \mathbf{ a_2(2a_2-1) } \\ \hline a_5 &=& \dfrac{a_4^2}{a_3} & | \quad \text{ Formula (2)} \\ a_5 &=& \dfrac{a_2^2(2a_2-1)^2}{a_2^2} \\ \mathbf{a_5} & \mathbf{=} & \mathbf{ (2a_2-1)^2 } \\ \hline a_6 &=& 2a_5-a_4 & | \quad \text{ Formula (1)} \\ &=& 2(2a_2-1)^2-a_2(2a_2-1) \\ \mathbf{a_6} & \mathbf{=} & \mathbf{ (2a_2-1)(3a_2-2) } \\ \hline a_7 &=& \dfrac{a_6^2}{a_5} & | \quad \text{ Formula (2)} \\ a_7 &=& \dfrac{(2a_2-1)^2(3a_2-2)^2}{(2a_2-1)^2} \\ \mathbf{a_7} & \mathbf{=} & \mathbf{ (3a_2-2)^2 } \\ \hline a_8 &=& 2a_7-a_6 & | \quad \text{ Formula (1)} \\ &=& 2(3a_2-2)^2-(2a_2-1)(3a_2-2) \\ \mathbf{a_8} & \mathbf{=} & \mathbf{ (3a_2-2)(4a_2-3) } \\ \hline a_9 &=& \dfrac{a_8^2}{a_7} & | \quad \text{ Formula (2)} \\ a_9 &=& \dfrac{(3a_2-2)^2(4a_2-3)^2}{(3a_2-2)^2} \\ \mathbf{a_9} & \mathbf{=} & \mathbf{ (4a_2-3)^2 } \\ \hline a_{10} &=& 2a_9-a_8 & | \quad \text{ Formula (1)} \\ &=& 2(4a_2-3)^2-(3a_2-2)(4a_2-3) \\ \mathbf{a_{10}} & \mathbf{=} & \mathbf{ (4a_2-3)(5a_2-4) } \\ \hline \end{array}$$

$$\mathbf{a_9+a_{10}=646}\\ \begin{array}{|rcll|} \hline \mathbf{a_9+a_{10}} & \mathbf{=}& \mathbf{646} \\ (4a_2-3)^2+(4a_2-3)(5a_2-4) &=& 646 \\ (4a_2-3) (4a_2-3+5a_2-4) &=& 646 \\ (4a_2-3) (9a_2-7) &=& 646 \\ \ldots \\ 36a_2^2-55a_2-625 &=& 0 \\\\ a_2 &=& \dfrac{55\pm\sqrt{55^2-4\cdot36\cdot(-625)} }{2\cdot 36} \\\\ &=& \dfrac{55\pm\sqrt{93025} }{72} \\\\ &=& \dfrac{55\pm305 }{72} \\\\ a_2 &=& \dfrac{55+305 }{72} \\\\ \mathbf{a_2 } & \mathbf{=} & \mathbf{5} \\\\ && \text{or} \\\\ a_2 &=& \dfrac{55-305 }{72} \\\\ a_2 & = & -3.47222222222 \\ && \text{no solution, because a_n is a sequence}\\ && \text{of positive integers!}\\ \hline \end{array}$$

$$\text{Let a_n be the greatest term in this sequence that is less than 1000. Find  a_n }$$

$$\begin{array}{|lclcl|} \hline a_1 && &=& 1 \\ a_2 && &=& 5 \\ a_3 &=& 5^2 &=& 25 \\ a_4 &=& 5\cdot 9 &=& 45 \\ a_5 &=& 9^2 &=& 81 \\ a_6 &=& 9\cdot 13 &=& 117 \\ a_7 &=& 13^2 &=& 169 \\ a_8 &=& 13\cdot 17 &=& 221 \\ a_9 &=& 17^2 &=& 289 \\ a_{10} &=& 17\cdot 21 &=& 357 \\ a_{11} &=& 21^2 &=& 441 \\ a_{12} &=& 21\cdot 25 &=& 525 \\ a_{13} &=& 25^2 &=& 625 \\ a_{14} &=& 25\cdot 29 &=& 725 \\ a_{15} &=& 29^2 &=& 841 \\ \color{red}a_{16} &=& 29\cdot 33 &\color{red}=& \color{red}957 \qquad a_n < 1000\\ a_{17} &=& 33^2 &=& 1089 \qquad a_n > 1000 \\ \hline \end{array}$$

$$\mathbf{\text{a_n is  957}}$$

$$\text{GP:}\\ \begin{array}{|r|r|rrrl|} \hline n & \text{ratio} & a_{2n-1} & a_{2n} & a_{2n+1} \\ \hline 1 &5 &1 & 5 & 25 \\ 2&1.8 &25 & 45 & 81 \\ 3&1.4\ldots &81 & 117 & 169 \\ 4&1.30769230769 &169 & 221 & 289 \\ 5&1.23529411765 &289 & 357 & 441 \\ 6&1.19047619048 &441 & 525 & 625 \\ 7&1.16 &625 & 725 & 841 \\ 8&1.13793103448 &841 & 957 & 1089 \\ \ldots & \ldots& \ldots& \ldots& \ldots \\ \hline \end{array}$$

$$\text{AP:}\\ \begin{array}{|r|r|rrrl|} \hline n & \text{common difference} & a_{2n} & a_{2n+1} & a_{2n+2} \\ \hline 1 &20 & 5 & 25 & 45 \\ 2 &36 &45 & 81 & 117 \\ 3 &52 &117 & 169 & 221 \\ 4 &68 & 221 & 289 & 357 \\ 5 &84 &357 & 441 & 525 \\ 6 &100& 525 & 625 & 725 \\ 7 &116& 725 & 841 & 957 \\ \ldots & \ldots& \ldots& \ldots& \ldots \\ \hline \end{array}$$

Feb 9, 2018
edited by heureka  Feb 9, 2018

#1
+24995
+1

I assume the question is:

$$\mathbf{\text{A sequence of positive integers with a_1=1 and a_9+a_{10}=646 is formed \\ so that the first three terms are in geometric progression, \\ the second, third, and fourth terms are in arithmetic progression, \\ and, in general, for all n\ge1, \\ the terms a_{2n-1}, a_{2n}, a_{2n+1} are in geometric progression, \\ and the terms a_{2n}, a_{2n+1}, and a_{2n+2} are in arithmetic progression. \\ Let a_n be the greatest term in this sequence that is less than 1000. Find  a_n .}}$$

Let AP = arithmetic progression,

Let GP = geometric progression

$$\text{AP Formula:}\\ \begin{array}{|llcll|} \hline \text{ t = term }\\ \text{ i,j,k =  indices}\\\\ t_i(j-k) + t_j(k-i) + t_k(i-j) = 0 \\\\ & i = 2n & t_i = a_{2n} \\ & j = 2n+1 & t_j = a_{2n+1} \\ & k = 2n+2 & t_k = a_{2n+2} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline t_i(j-k) + t_j(k-i) + t_k(i-j) &=& 0 \\ a_{2n}(2n+1-(2n+2)) + a_{2n+1}(2n+2-2n) + a_{2n+2}(2n-(2n+1)) &=& 0 \\ \mathbf{-a_{2n} + 2a_{2n+1} - a_{2n+2}} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}$$

$$\text{GP Formula:}\\ \begin{array}{|llcll|} \hline \text{ t = term }\\ \text{ i,j,k =  indices}\\\\ t_i^{j-k} \times t_j^{k-i} \times t_k^{i-j} = 1 \\\\ & i = 2n-1 & t_i = a_{2n-1} \\ & j = 2n & t_j = a_{2n} \\ & k = 2n+1 & t_k = a_{2n+1} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline t_i^{j-k} \times t_j^{k-i} \times t_k^{i-j} = 1 \\\\ a_{2n-1}^{2n-(2n+1)} \times a_{2n}^{2n+1-(2n-1)} \times a_{2n+1}^{2n-1-(2n)} = 1 \\\\ \mathbf{a_{2n-1}^{-1} \times 2a_{2n}^{2} \times a_{2n+1}^{-1} } &\mathbf{=}& \mathbf{1} \\ \hline \end{array}$$

So we have:

$$\begin{array}{|lrcll|} \hline (1) & \mathbf{a_{2n+2}} &\mathbf{=}& \mathbf{2a_{2n+1} -a_{2n} } \\ (2) & \mathbf{a_{2n+1} } &\mathbf{=}& \mathbf{\dfrac{ a_{2n}^{2} }{a_{2n-1} } } \\ \hline \end{array}$$

$$\mathbf{a_1=1 }\\ \begin{array}{|rcll|} \hline a_3 &=& \dfrac{a_2^2}{a_1} \quad a_1 = 1 & | \quad \text{ Formula (2)} \\ \mathbf{a_3} & \mathbf{=} & \mathbf{ a_2^2 } \\ \hline a_4 &=& 2a_3-a_2 \quad a_3 = a_2^2 & | \quad \text{ Formula (1)} \\ &=& 2a_2^2-a_2 \\ \mathbf{a_4} & \mathbf{=} & \mathbf{ a_2(2a_2-1) } \\ \hline a_5 &=& \dfrac{a_4^2}{a_3} & | \quad \text{ Formula (2)} \\ a_5 &=& \dfrac{a_2^2(2a_2-1)^2}{a_2^2} \\ \mathbf{a_5} & \mathbf{=} & \mathbf{ (2a_2-1)^2 } \\ \hline a_6 &=& 2a_5-a_4 & | \quad \text{ Formula (1)} \\ &=& 2(2a_2-1)^2-a_2(2a_2-1) \\ \mathbf{a_6} & \mathbf{=} & \mathbf{ (2a_2-1)(3a_2-2) } \\ \hline a_7 &=& \dfrac{a_6^2}{a_5} & | \quad \text{ Formula (2)} \\ a_7 &=& \dfrac{(2a_2-1)^2(3a_2-2)^2}{(2a_2-1)^2} \\ \mathbf{a_7} & \mathbf{=} & \mathbf{ (3a_2-2)^2 } \\ \hline a_8 &=& 2a_7-a_6 & | \quad \text{ Formula (1)} \\ &=& 2(3a_2-2)^2-(2a_2-1)(3a_2-2) \\ \mathbf{a_8} & \mathbf{=} & \mathbf{ (3a_2-2)(4a_2-3) } \\ \hline a_9 &=& \dfrac{a_8^2}{a_7} & | \quad \text{ Formula (2)} \\ a_9 &=& \dfrac{(3a_2-2)^2(4a_2-3)^2}{(3a_2-2)^2} \\ \mathbf{a_9} & \mathbf{=} & \mathbf{ (4a_2-3)^2 } \\ \hline a_{10} &=& 2a_9-a_8 & | \quad \text{ Formula (1)} \\ &=& 2(4a_2-3)^2-(3a_2-2)(4a_2-3) \\ \mathbf{a_{10}} & \mathbf{=} & \mathbf{ (4a_2-3)(5a_2-4) } \\ \hline \end{array}$$

$$\mathbf{a_9+a_{10}=646}\\ \begin{array}{|rcll|} \hline \mathbf{a_9+a_{10}} & \mathbf{=}& \mathbf{646} \\ (4a_2-3)^2+(4a_2-3)(5a_2-4) &=& 646 \\ (4a_2-3) (4a_2-3+5a_2-4) &=& 646 \\ (4a_2-3) (9a_2-7) &=& 646 \\ \ldots \\ 36a_2^2-55a_2-625 &=& 0 \\\\ a_2 &=& \dfrac{55\pm\sqrt{55^2-4\cdot36\cdot(-625)} }{2\cdot 36} \\\\ &=& \dfrac{55\pm\sqrt{93025} }{72} \\\\ &=& \dfrac{55\pm305 }{72} \\\\ a_2 &=& \dfrac{55+305 }{72} \\\\ \mathbf{a_2 } & \mathbf{=} & \mathbf{5} \\\\ && \text{or} \\\\ a_2 &=& \dfrac{55-305 }{72} \\\\ a_2 & = & -3.47222222222 \\ && \text{no solution, because a_n is a sequence}\\ && \text{of positive integers!}\\ \hline \end{array}$$

$$\text{Let a_n be the greatest term in this sequence that is less than 1000. Find  a_n }$$

$$\begin{array}{|lclcl|} \hline a_1 && &=& 1 \\ a_2 && &=& 5 \\ a_3 &=& 5^2 &=& 25 \\ a_4 &=& 5\cdot 9 &=& 45 \\ a_5 &=& 9^2 &=& 81 \\ a_6 &=& 9\cdot 13 &=& 117 \\ a_7 &=& 13^2 &=& 169 \\ a_8 &=& 13\cdot 17 &=& 221 \\ a_9 &=& 17^2 &=& 289 \\ a_{10} &=& 17\cdot 21 &=& 357 \\ a_{11} &=& 21^2 &=& 441 \\ a_{12} &=& 21\cdot 25 &=& 525 \\ a_{13} &=& 25^2 &=& 625 \\ a_{14} &=& 25\cdot 29 &=& 725 \\ a_{15} &=& 29^2 &=& 841 \\ \color{red}a_{16} &=& 29\cdot 33 &\color{red}=& \color{red}957 \qquad a_n < 1000\\ a_{17} &=& 33^2 &=& 1089 \qquad a_n > 1000 \\ \hline \end{array}$$

$$\mathbf{\text{a_n is  957}}$$

$$\text{GP:}\\ \begin{array}{|r|r|rrrl|} \hline n & \text{ratio} & a_{2n-1} & a_{2n} & a_{2n+1} \\ \hline 1 &5 &1 & 5 & 25 \\ 2&1.8 &25 & 45 & 81 \\ 3&1.4\ldots &81 & 117 & 169 \\ 4&1.30769230769 &169 & 221 & 289 \\ 5&1.23529411765 &289 & 357 & 441 \\ 6&1.19047619048 &441 & 525 & 625 \\ 7&1.16 &625 & 725 & 841 \\ 8&1.13793103448 &841 & 957 & 1089 \\ \ldots & \ldots& \ldots& \ldots& \ldots \\ \hline \end{array}$$

$$\text{AP:}\\ \begin{array}{|r|r|rrrl|} \hline n & \text{common difference} & a_{2n} & a_{2n+1} & a_{2n+2} \\ \hline 1 &20 & 5 & 25 & 45 \\ 2 &36 &45 & 81 & 117 \\ 3 &52 &117 & 169 & 221 \\ 4 &68 & 221 & 289 & 357 \\ 5 &84 &357 & 441 & 525 \\ 6 &100& 525 & 625 & 725 \\ 7 &116& 725 & 841 & 957 \\ \ldots & \ldots& \ldots& \ldots& \ldots \\ \hline \end{array}$$

heureka Feb 9, 2018
edited by heureka  Feb 9, 2018