A square $DEFG$ varies inside equilateral triangle $ABC$ so that $E$ always lies on side $\overline{AB},$ $F$ always lies on side $\overline{BC},$ and $G$ always lies on side $\overline{AC}.$ The point $D$ starts on side $\overline{AB}$ and ends on side $\overline{AC}.$ The diagram below shows the initial position of square $DEFG,$ an intermediate position, and the final position.
Show that as square $DEFG$ varies, the height of point $D$ above $\overline{BC}$ remains constant.
P.S. Can I have a non-trig solution? Thanks!