+0  
 
0
187
2
avatar+140 

A square $DEFG$ varies inside equilateral triangle $ABC$ so that $E$ always lies on side $\overline{AB},$ $F$ always lies on side $\overline{BC},$ and $G$ always lies on side $\overline{AC}.$ The point $D$ starts on side $\overline{AB}$ and ends on side $\overline{AC}.$ The diagram below shows the initial position of square $DEFG,$ an intermediate position, and the final position.



Show that as square $DEFG$ varies, the height of point $D$ above $\overline{BC}$ remains constant.

 

P.S. Can I have a non-trig solution? Thanks!

 Apr 18, 2019
edited by LeoIsTheBest  Apr 18, 2019
 #1
avatar+106539 
0

Here :

 

https://web2.0calc.com/questions/a-square-defg-varies-inside-equilateral-triangle

 

 

cool cool cool

 Apr 18, 2019
 #2
avatar+140 
0

"Can I have a non-trig solution?"

 Apr 25, 2019

34 Online Users

avatar
avatar
avatar