+0  
 
0
2622
1
avatar

A sum of $850 is invested for 10 years and the interest is compounded quarterly. There is $1050 in the account at the end of 10 years. What is the nominal annual rate?

 Sep 29, 2014

Best Answer 

 #1
avatar+23252 
+10

The compound interest formula is: A = P(1 + r/n)^(nt)

where A = final amount, P = amount invested, r = decimal interest rate, n = number of times compounded per year, and t = number of years.

Entering the given values:    1050 = 850(1 + r/4)^(4*10)

---> 1050 = 850(1 + r/4)^40                  Divide bothsides by 850, to get:

--->  (1050/850) = (1 + r/4)^40             Find the 40th root of both sides, to get:    

--->  (1050/850)^(1/40) = 1 + r/4          Subtract 1 from both sides, to get:   

--->  (1050/850)^(1/40) - 1 = r/4            Multiply both sides by 4 to get:

--->  [ (1050/850)^(1/40) - 1 ] * 4 = r

r ≈ .02119  --> r  ≈ 2.119%

 Sep 29, 2014
 #1
avatar+23252 
+10
Best Answer

The compound interest formula is: A = P(1 + r/n)^(nt)

where A = final amount, P = amount invested, r = decimal interest rate, n = number of times compounded per year, and t = number of years.

Entering the given values:    1050 = 850(1 + r/4)^(4*10)

---> 1050 = 850(1 + r/4)^40                  Divide bothsides by 850, to get:

--->  (1050/850) = (1 + r/4)^40             Find the 40th root of both sides, to get:    

--->  (1050/850)^(1/40) = 1 + r/4          Subtract 1 from both sides, to get:   

--->  (1050/850)^(1/40) - 1 = r/4            Multiply both sides by 4 to get:

--->  [ (1050/850)^(1/40) - 1 ] * 4 = r

r ≈ .02119  --> r  ≈ 2.119%

geno3141 Sep 29, 2014

1 Online Users

avatar