Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
5
22256
1
avatar

A wooden artifact from an ancient tomb contains 65% of the carbon-14 that is present in living trees. How long ago was the artifact made? (The half-life of carbon-14 is 5730 years.

 Jul 9, 2014

Best Answer 

 #1
avatar+33658 
+8

The radioactive decay equation is N = N0e-ln(2)*t/τ, where τ is the half-life, N0 is the number of atoms at time t = 0 and N is the number at time t.

Rewrite this as (N/N0) = e-ln(2)*t/τ, where, here, N/N0 is 0.65  (i.e. 65% expressed as a fraction). So:

0.65 =  e-ln(2)*t/5730.

Take logs of both sides:

ln(0.65) = -ln(2)*t/5730.

Rearrange:

t = -5730*ln(0.65)/ln(2) years

t=5730×ln(0.65)ln(2)t=3561.1283987561281742

or the artifact was made ≈ 3560 years ago.

 Jul 13, 2014
 #1
avatar+33658 
+8
Best Answer

The radioactive decay equation is N = N0e-ln(2)*t/τ, where τ is the half-life, N0 is the number of atoms at time t = 0 and N is the number at time t.

Rewrite this as (N/N0) = e-ln(2)*t/τ, where, here, N/N0 is 0.65  (i.e. 65% expressed as a fraction). So:

0.65 =  e-ln(2)*t/5730.

Take logs of both sides:

ln(0.65) = -ln(2)*t/5730.

Rearrange:

t = -5730*ln(0.65)/ln(2) years

t=5730×ln(0.65)ln(2)t=3561.1283987561281742

or the artifact was made ≈ 3560 years ago.

Alan Jul 13, 2014

1 Online Users