+0  
 
0
462
2
avatar

Let $n$ be a positive integer greater than or equal to $3$. Let $a,b$ be integers such that $ab$ is invertible modulo $n$ and $(ab)^{-1}\equiv 2\pmod n$. Given $a+b$ is invertible, what is the remainder when $(a+b)^{-1}(a^{-1}+b^{-1})$ is divided by $n$?

 Sep 10, 2020
 #1
avatar
0

The remainder is 2^2 = 4.

 Sep 10, 2020
 #2
avatar
0

That is incorrect :(

Guest Sep 10, 2020

5 Online Users

avatar
avatar