Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
33
3
avatar+118 

What is the ordered pair of real numbers(x,y)which satisfies the equation |x+y7|+|4xy+12|=0?

 Mar 20, 2024

Best Answer 

 #2
avatar+410 
+2

For two absolute values to sum to zero, we must have 

|a|+|b|=0, then {a=0b=0, because |x|0.

Following this logic, the only possible solution is {x+y7=04xy+12=0.

 5x+5=0

{x=1y=8.

Therefore the ordered pair (-1, 8) is the only ordered pair that works.

 Mar 21, 2024
 #1
avatar+2729 
-1

When we graph the equations, we see that they intersect at (4,2).  Therefore, the solution is (4,2).

 

 Mar 20, 2024
 #2
avatar+410 
+2
Best Answer

For two absolute values to sum to zero, we must have 

|a|+|b|=0, then {a=0b=0, because |x|0.

Following this logic, the only possible solution is {x+y7=04xy+12=0.

 5x+5=0

{x=1y=8.

Therefore the ordered pair (-1, 8) is the only ordered pair that works.

hairyberry Mar 21, 2024

1 Online Users