+0  
 
+1
793
3
avatar+73 

Let 

\(f(x)= \begin{cases} -4x^{2}+4x & \text{for } x < 0, \\ 7x^{2}-5 & \text{for } x \geqslant 0. \end{cases}\)

According to the alternate form of the definition of the derivative, to compute \(f'(0)\), we need to compute the left-hand limit
 

\(\lim \limits _ {x \to 0^-}\) ?, which is ?,

 

and the right-hand limit

 

\(\lim \limits _ {x \to 0^+}\) ?, which is ?.

 Mar 9, 2022

Best Answer 

 #3
avatar+33661 
+3

Like this:

 Mar 9, 2022
 #1
avatar+23252 
0

The left-hand limit is 0.

The right-hand limit is -5.

 Mar 9, 2022
 #2
avatar+73 
-2

This answer is incorrect on my side. I think this problem should be looked over again to find the solution.

GAMEMASTERX40  Mar 9, 2022
 #3
avatar+33661 
+3
Best Answer

Like this:

Alan Mar 9, 2022

1 Online Users