+0  
 
0
41
3
avatar+2077 

\(\frac{2}{5}-\frac{3}{3y}\)

RainbowPanda  Nov 5, 2018
 #1
avatar+2786 
+2

\(\text{the key is to get them over a single denominator}\\ \dfrac 2 5 - \dfrac{3}{3y} = \\ \dfrac{2\cdot 3y - 3\cdot 5}{5\cdot 3y}=\\ \dfrac{6y-15}{15y} = \\ \dfrac{2y-5}{5y} =\\ \text{and you can go one step further if you like}\\ \dfrac 2 5 - \dfrac 1 y\)

Rom  Nov 5, 2018
 #2
avatar+2077 
+1

Thank you!

RainbowPanda  Nov 5, 2018
 #3
avatar+91213 
+2

Thanks, Rom.....

 

Here's another proceedure that always works, BUT....it may NOT produce a fraction in "reduced" form....however...if you are good at reducing "final" fractions....it relieves you of the task of finding the "common denominator"

 

Note....suppose that we have

 

  a    -    c

__        __

 b          d

 

Reduce any fractions that we can, first

Ctross multiply  in this order    ⇒   ad    and  bc    

Seperate these with the same sign as we have between the fractions

So we have   ad  -  bc

Put this over the product of the denominators  =  bd

So..we have

 

ad  -  bc

______

   bd

 

 

So...in your problem, we have

 

2       -       3

__           ___

5               3y

 

Note that the second fraction can be reduced first... so we have

 

2     -       1

__         ___

5             y   

 

Cross-multiply in the specified order

2*y  - 5*1     =      2y - 5

Product of the denominators  

5 * y    =   5y

 

 

So  we have

 

 

2y - 5

______       [ which is the same thing as Rom's 4th step  !! ]

   5y

 

 

cool cool cool

CPhill  Nov 5, 2018

31 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.