+0  
 
0
98
1
avatar+33 

Find the product of the \(y\)-coordinates of all the distinct solutions \((x,y)\) for the two equations \(y=x^2-8\) and \(y^2=-5x+44\).

 

I squared the first equation, and then substituted for y^2:

x^4 - 16x^2 + 64 = -5x + 44 --> x^4 - 16x^2 + 5x + 20 = 0 --> x^2*(x^2 - 4) + 5*(x+4) --> x^2*(x - 4)(x + 4) + 5*(x + 4) -->

(x^2(x - 4) + 5)(x + 4) = 0. Then....umm...not sure. One solution is x = -4, but not sure how to find the other one.

Toytrain  Jun 22, 2018

Best Answer 

 #1
avatar+20011 
+2

Advanced Quadratic

Find the product of the \(y\)-coordinates of all the distinct solutions \((x,y)\) for the two equations
\(y=x^2-8\) and \(y^2=-5x+44\).

 

\(\begin{array}{|lrcll|} \hline (1) & y &=& x^2-8 \\\\ (2) & y^2 &=& -5x+44 \quad | \quad y^2 = (x^2-8)^2 \\ & (x^2-8)^2 &=& -5x+44 \\ & x^4-16x^2+84 &=& -5x+44 \\ & x^4-16x^2+5x+20 &=& 0 \\ & x^2(x^2-16)+5(x+4) &=& 0 \quad | \quad x^2-16 = (x-4)(x+4) \\ & x^2(x-4)(x+4)+5(x+4) &=& 0 \\ & (x+4)\left(x^2(x-4)+5\right) &=& 0 \\ \\ 1. & x_1+4 &=& 0 \\ & \mathbf{x_1} &\mathbf{=}& \mathbf{-4} \\ & y_1 &=& x_1^2-8 \\ & y_1 &=& (-4)^2-8 \\ & \mathbf{y_1} &\mathbf{=}& \mathbf{8} \\ & \text{solution $(-4,8)$ } \\\\ 2. & x^2(x-4)+5 &=& 0 \\ & x^3-4x^2 + 5 &=& 0 \\ \text{try } x=-1 & (-1)^3-4(-1)^2 + 5 &\overset{?}{=}& 0 \\ & -1-4 + 5 & = & 0\ \checkmark \\ & \mathbf{x_2} &\mathbf{=}& \mathbf{-1} \\ & y_2 &=& x_2^2-8 \\ & y_2 &=& (-1)^2-8 \\ & \mathbf{y_2} &\mathbf{=}& \mathbf{-7} \\ & \text{solution $(-1,-7)$ } \\\\ \hline \end{array}\)

 

Polynomial long division

\(\begin{array}{|rcll|} \hline x^2-5x+5 &=& 0 \\ x &=& \dfrac{5\pm\sqrt{25-4\cdot 5 }}{2}\\ x &=& \dfrac{5\pm\sqrt{5}}{2} \\\\ \mathbf{x_3} &\mathbf{=}& \mathbf{\dfrac{5+\sqrt{5}}{2}=3.618 } \\ y_3 &=& x_3^2-8 \\ y_3 &=& \left(\dfrac{5+\sqrt{5}}{2} \right)^2-8 \\ \mathbf{y_3} &\mathbf{=}& \mathbf{\dfrac{5\sqrt{5}-1}{2} = 5.09 } \\ \text{solution $(\dfrac{5+\sqrt{5}}{2},\dfrac{5\sqrt{5}-1}{2}) \\ =(3.618,5.09)$ } \\\\ \mathbf{x_4} &\mathbf{=}& \mathbf{\dfrac{5-\sqrt{5}}{2}=1.382 } \\ y_4 &=& x_4^2-8 \\ y_4 &=& \left(\dfrac{5-\sqrt{5}}{2} \right)^2-8 \\ \mathbf{y_4} &\mathbf{=}& \mathbf{-\left(\dfrac{5\sqrt{5}+1}{2}\right) = -6.09 } \\ \text{solution $(\dfrac{5-\sqrt{5}}{2},-\left(\dfrac{5\sqrt{5}+1}{2}\right)) \\ =(1.382,-6.09)$ } \\ \hline \end{array}\)

 

 

Find the product of the y-coordinates of all the distinct solutions (x,y):

\(\begin{array}{|rcll|} \hline && y_1y_2y_3y_4 \\ &=& 8\times(-7)\times \left(\dfrac{5\sqrt{5}-1}{2}\right) \times \left(-\left(\dfrac{5\sqrt{5}+1}{2}\right)\right) \\ &=& 8\times(-7)\times (-31) \\ &\mathbf{=}& \mathbf{1736} \\ \hline \end{array}\)

 

laugh

heureka  Jun 22, 2018
 #1
avatar+20011 
+2
Best Answer

Advanced Quadratic

Find the product of the \(y\)-coordinates of all the distinct solutions \((x,y)\) for the two equations
\(y=x^2-8\) and \(y^2=-5x+44\).

 

\(\begin{array}{|lrcll|} \hline (1) & y &=& x^2-8 \\\\ (2) & y^2 &=& -5x+44 \quad | \quad y^2 = (x^2-8)^2 \\ & (x^2-8)^2 &=& -5x+44 \\ & x^4-16x^2+84 &=& -5x+44 \\ & x^4-16x^2+5x+20 &=& 0 \\ & x^2(x^2-16)+5(x+4) &=& 0 \quad | \quad x^2-16 = (x-4)(x+4) \\ & x^2(x-4)(x+4)+5(x+4) &=& 0 \\ & (x+4)\left(x^2(x-4)+5\right) &=& 0 \\ \\ 1. & x_1+4 &=& 0 \\ & \mathbf{x_1} &\mathbf{=}& \mathbf{-4} \\ & y_1 &=& x_1^2-8 \\ & y_1 &=& (-4)^2-8 \\ & \mathbf{y_1} &\mathbf{=}& \mathbf{8} \\ & \text{solution $(-4,8)$ } \\\\ 2. & x^2(x-4)+5 &=& 0 \\ & x^3-4x^2 + 5 &=& 0 \\ \text{try } x=-1 & (-1)^3-4(-1)^2 + 5 &\overset{?}{=}& 0 \\ & -1-4 + 5 & = & 0\ \checkmark \\ & \mathbf{x_2} &\mathbf{=}& \mathbf{-1} \\ & y_2 &=& x_2^2-8 \\ & y_2 &=& (-1)^2-8 \\ & \mathbf{y_2} &\mathbf{=}& \mathbf{-7} \\ & \text{solution $(-1,-7)$ } \\\\ \hline \end{array}\)

 

Polynomial long division

\(\begin{array}{|rcll|} \hline x^2-5x+5 &=& 0 \\ x &=& \dfrac{5\pm\sqrt{25-4\cdot 5 }}{2}\\ x &=& \dfrac{5\pm\sqrt{5}}{2} \\\\ \mathbf{x_3} &\mathbf{=}& \mathbf{\dfrac{5+\sqrt{5}}{2}=3.618 } \\ y_3 &=& x_3^2-8 \\ y_3 &=& \left(\dfrac{5+\sqrt{5}}{2} \right)^2-8 \\ \mathbf{y_3} &\mathbf{=}& \mathbf{\dfrac{5\sqrt{5}-1}{2} = 5.09 } \\ \text{solution $(\dfrac{5+\sqrt{5}}{2},\dfrac{5\sqrt{5}-1}{2}) \\ =(3.618,5.09)$ } \\\\ \mathbf{x_4} &\mathbf{=}& \mathbf{\dfrac{5-\sqrt{5}}{2}=1.382 } \\ y_4 &=& x_4^2-8 \\ y_4 &=& \left(\dfrac{5-\sqrt{5}}{2} \right)^2-8 \\ \mathbf{y_4} &\mathbf{=}& \mathbf{-\left(\dfrac{5\sqrt{5}+1}{2}\right) = -6.09 } \\ \text{solution $(\dfrac{5-\sqrt{5}}{2},-\left(\dfrac{5\sqrt{5}+1}{2}\right)) \\ =(1.382,-6.09)$ } \\ \hline \end{array}\)

 

 

Find the product of the y-coordinates of all the distinct solutions (x,y):

\(\begin{array}{|rcll|} \hline && y_1y_2y_3y_4 \\ &=& 8\times(-7)\times \left(\dfrac{5\sqrt{5}-1}{2}\right) \times \left(-\left(\dfrac{5\sqrt{5}+1}{2}\right)\right) \\ &=& 8\times(-7)\times (-31) \\ &\mathbf{=}& \mathbf{1736} \\ \hline \end{array}\)

 

laugh

heureka  Jun 22, 2018

38 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.