We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
289
1
avatar+35 

Find the product of the \(y\)-coordinates of all the distinct solutions \((x,y)\) for the two equations \(y=x^2-8\) and \(y^2=-5x+44\).

 

I squared the first equation, and then substituted for y^2:

x^4 - 16x^2 + 64 = -5x + 44 --> x^4 - 16x^2 + 5x + 20 = 0 --> x^2*(x^2 - 4) + 5*(x+4) --> x^2*(x - 4)(x + 4) + 5*(x + 4) -->

(x^2(x - 4) + 5)(x + 4) = 0. Then....umm...not sure. One solution is x = -4, but not sure how to find the other one.

 Jun 22, 2018

Best Answer 

 #1
avatar+22343 
+2

Advanced Quadratic

Find the product of the \(y\)-coordinates of all the distinct solutions \((x,y)\) for the two equations
\(y=x^2-8\) and \(y^2=-5x+44\).

 

\(\begin{array}{|lrcll|} \hline (1) & y &=& x^2-8 \\\\ (2) & y^2 &=& -5x+44 \quad | \quad y^2 = (x^2-8)^2 \\ & (x^2-8)^2 &=& -5x+44 \\ & x^4-16x^2+84 &=& -5x+44 \\ & x^4-16x^2+5x+20 &=& 0 \\ & x^2(x^2-16)+5(x+4) &=& 0 \quad | \quad x^2-16 = (x-4)(x+4) \\ & x^2(x-4)(x+4)+5(x+4) &=& 0 \\ & (x+4)\left(x^2(x-4)+5\right) &=& 0 \\ \\ 1. & x_1+4 &=& 0 \\ & \mathbf{x_1} &\mathbf{=}& \mathbf{-4} \\ & y_1 &=& x_1^2-8 \\ & y_1 &=& (-4)^2-8 \\ & \mathbf{y_1} &\mathbf{=}& \mathbf{8} \\ & \text{solution $(-4,8)$ } \\\\ 2. & x^2(x-4)+5 &=& 0 \\ & x^3-4x^2 + 5 &=& 0 \\ \text{try } x=-1 & (-1)^3-4(-1)^2 + 5 &\overset{?}{=}& 0 \\ & -1-4 + 5 & = & 0\ \checkmark \\ & \mathbf{x_2} &\mathbf{=}& \mathbf{-1} \\ & y_2 &=& x_2^2-8 \\ & y_2 &=& (-1)^2-8 \\ & \mathbf{y_2} &\mathbf{=}& \mathbf{-7} \\ & \text{solution $(-1,-7)$ } \\\\ \hline \end{array}\)

 

Polynomial long division

\(\begin{array}{|rcll|} \hline x^2-5x+5 &=& 0 \\ x &=& \dfrac{5\pm\sqrt{25-4\cdot 5 }}{2}\\ x &=& \dfrac{5\pm\sqrt{5}}{2} \\\\ \mathbf{x_3} &\mathbf{=}& \mathbf{\dfrac{5+\sqrt{5}}{2}=3.618 } \\ y_3 &=& x_3^2-8 \\ y_3 &=& \left(\dfrac{5+\sqrt{5}}{2} \right)^2-8 \\ \mathbf{y_3} &\mathbf{=}& \mathbf{\dfrac{5\sqrt{5}-1}{2} = 5.09 } \\ \text{solution $(\dfrac{5+\sqrt{5}}{2},\dfrac{5\sqrt{5}-1}{2}) \\ =(3.618,5.09)$ } \\\\ \mathbf{x_4} &\mathbf{=}& \mathbf{\dfrac{5-\sqrt{5}}{2}=1.382 } \\ y_4 &=& x_4^2-8 \\ y_4 &=& \left(\dfrac{5-\sqrt{5}}{2} \right)^2-8 \\ \mathbf{y_4} &\mathbf{=}& \mathbf{-\left(\dfrac{5\sqrt{5}+1}{2}\right) = -6.09 } \\ \text{solution $(\dfrac{5-\sqrt{5}}{2},-\left(\dfrac{5\sqrt{5}+1}{2}\right)) \\ =(1.382,-6.09)$ } \\ \hline \end{array}\)

 

 

Find the product of the y-coordinates of all the distinct solutions (x,y):

\(\begin{array}{|rcll|} \hline && y_1y_2y_3y_4 \\ &=& 8\times(-7)\times \left(\dfrac{5\sqrt{5}-1}{2}\right) \times \left(-\left(\dfrac{5\sqrt{5}+1}{2}\right)\right) \\ &=& 8\times(-7)\times (-31) \\ &\mathbf{=}& \mathbf{1736} \\ \hline \end{array}\)

 

laugh

 Jun 22, 2018
 #1
avatar+22343 
+2
Best Answer

Advanced Quadratic

Find the product of the \(y\)-coordinates of all the distinct solutions \((x,y)\) for the two equations
\(y=x^2-8\) and \(y^2=-5x+44\).

 

\(\begin{array}{|lrcll|} \hline (1) & y &=& x^2-8 \\\\ (2) & y^2 &=& -5x+44 \quad | \quad y^2 = (x^2-8)^2 \\ & (x^2-8)^2 &=& -5x+44 \\ & x^4-16x^2+84 &=& -5x+44 \\ & x^4-16x^2+5x+20 &=& 0 \\ & x^2(x^2-16)+5(x+4) &=& 0 \quad | \quad x^2-16 = (x-4)(x+4) \\ & x^2(x-4)(x+4)+5(x+4) &=& 0 \\ & (x+4)\left(x^2(x-4)+5\right) &=& 0 \\ \\ 1. & x_1+4 &=& 0 \\ & \mathbf{x_1} &\mathbf{=}& \mathbf{-4} \\ & y_1 &=& x_1^2-8 \\ & y_1 &=& (-4)^2-8 \\ & \mathbf{y_1} &\mathbf{=}& \mathbf{8} \\ & \text{solution $(-4,8)$ } \\\\ 2. & x^2(x-4)+5 &=& 0 \\ & x^3-4x^2 + 5 &=& 0 \\ \text{try } x=-1 & (-1)^3-4(-1)^2 + 5 &\overset{?}{=}& 0 \\ & -1-4 + 5 & = & 0\ \checkmark \\ & \mathbf{x_2} &\mathbf{=}& \mathbf{-1} \\ & y_2 &=& x_2^2-8 \\ & y_2 &=& (-1)^2-8 \\ & \mathbf{y_2} &\mathbf{=}& \mathbf{-7} \\ & \text{solution $(-1,-7)$ } \\\\ \hline \end{array}\)

 

Polynomial long division

\(\begin{array}{|rcll|} \hline x^2-5x+5 &=& 0 \\ x &=& \dfrac{5\pm\sqrt{25-4\cdot 5 }}{2}\\ x &=& \dfrac{5\pm\sqrt{5}}{2} \\\\ \mathbf{x_3} &\mathbf{=}& \mathbf{\dfrac{5+\sqrt{5}}{2}=3.618 } \\ y_3 &=& x_3^2-8 \\ y_3 &=& \left(\dfrac{5+\sqrt{5}}{2} \right)^2-8 \\ \mathbf{y_3} &\mathbf{=}& \mathbf{\dfrac{5\sqrt{5}-1}{2} = 5.09 } \\ \text{solution $(\dfrac{5+\sqrt{5}}{2},\dfrac{5\sqrt{5}-1}{2}) \\ =(3.618,5.09)$ } \\\\ \mathbf{x_4} &\mathbf{=}& \mathbf{\dfrac{5-\sqrt{5}}{2}=1.382 } \\ y_4 &=& x_4^2-8 \\ y_4 &=& \left(\dfrac{5-\sqrt{5}}{2} \right)^2-8 \\ \mathbf{y_4} &\mathbf{=}& \mathbf{-\left(\dfrac{5\sqrt{5}+1}{2}\right) = -6.09 } \\ \text{solution $(\dfrac{5-\sqrt{5}}{2},-\left(\dfrac{5\sqrt{5}+1}{2}\right)) \\ =(1.382,-6.09)$ } \\ \hline \end{array}\)

 

 

Find the product of the y-coordinates of all the distinct solutions (x,y):

\(\begin{array}{|rcll|} \hline && y_1y_2y_3y_4 \\ &=& 8\times(-7)\times \left(\dfrac{5\sqrt{5}-1}{2}\right) \times \left(-\left(\dfrac{5\sqrt{5}+1}{2}\right)\right) \\ &=& 8\times(-7)\times (-31) \\ &\mathbf{=}& \mathbf{1736} \\ \hline \end{array}\)

 

laugh

heureka Jun 22, 2018

17 Online Users

avatar
avatar
avatar