+0  
 
0
53
9
avatar+86 

1) find the sec θ for and angle whose teminal side contains that poing (-3,4)

 

2) give x-5 is a factor of x^3 + 9x^2 - 37x - 165 what are the other factors

 

3) solve 16^x = (1/4)^(x+4)

 

4) simplify (9x + 27)/x^2 - 6x + 8) ÷ (6x + 18)/(4x^2 - 16)

 

5) simplify (2/x) + 3/(x-1) ÷ 1/(2x-2)

 

6) what is g(f(x)) if f(x) = 2x^2 - x and g(x) = x^(-1/2)

 Jan 31, 2019
 #1
avatar+96080 
0

Gonna eat supper, Blank.....hang on and I'll answer these in just a few minutes...

 

 

cool cool cool

 Jan 31, 2019
 #2
avatar+96080 
+2

1) find the sec θ for and angle whose teminal side contains the point (-3,4)

 

Sec =  r /x 

 

r =  sqrt [ (-3)^2 + 4^2 ]  =  sqrt (25) = 5

 

So....sec  θ  = 5 / - 3

The angle will be in the 2nd quadrant

 

To find this....use the secant inverse....

 

arcsec (5/-3) ≈  126.9° =   θ

 

 

cool cool cool

 Jan 31, 2019
 #3
avatar+96080 
+2

2) give x-5 is a factor of x^3 + 9x^2 - 37x - 165 what are the other factors

 

We can use sythetic division to dwtermine the remaining polynomial

 

 

5  [  1    9     - 37     -  165 ]

             5       70         165

     _____________________

        1   14    33           0

 

The remaining polynomial  is    x^2 + 14 + 33 

 

Factoring this we have that

(x + 11) ( x + 3)  = the remaining factors  !!!

 

cool cool cool

 Jan 31, 2019
 #4
avatar+86 
0

So basically we take the answer of the provided factor and use that as the multiplier in the syntetic divison to get a quadratic function that we use any way to factor down into the final factors? So how would this work if there was a quadratic to the 5th power? The same thing?

BLANK  Jan 31, 2019
 #6
avatar+96080 
0

We would do the same thing.....one thing though....the remaining polynomial may or may not be factorable

 

Fortunately....this one WAS capable of being factored....!!!!

 

[ We might have to use the Rational Zeroes Theorem to find the other possible roots if the remaining polynomial doesn't factor easily ]

 

 

cool  cool cool

CPhill  Jan 31, 2019
 #5
avatar+96080 
+2

3) solve 16^x = (1/4)^(x+4)

 

Note that   16 = 4^2

And 1/4 = 4^(-1)

So  we have

 

(4^2)^x   = (4^(-1) )( x + 4)          using  a law of exponents

 

4^(2x)  = (4)^ (-x - 4)      we have the same bases....so....we can solve for the exponents

 

2x  = -x - 4     add x to both sides

 

3x = - 4     divide both sides by 3

 

x = -4/3

 

 

cool cool cool

 Jan 31, 2019
 #7
avatar+96080 
+2

4) simplify (9x + 27)/x^2 - 6x + 8) ÷ (6x + 18)/(4x^2 - 16)

 

Factor tops/bottoms

 

9 (x + 3)                     6 (x + 3)

__________    ÷   ____________        flip the second fraction and multiply

(x -4)( x - 2)           (x + 4)(x - 4)

 

9(x + 3)                  (x + 4) ( x - 4)

__________    *      _____________

(x - 4) ( x - 2)           6(x + 3)

 

 

9(x + 3) * (x + 4) ( x - 4)

___________________

6  (x + 3) *  (x -4) ( x - 2)

 

 

3 (x + 4)             3x + 4

_______  =       _____ 

2 (x - 2)             2x - 4

 

 

 

cool  cool cool

 Jan 31, 2019
 #8
avatar+96080 
+2

5) simplify (2/x) + 3/(x-1) ÷ 1/(2x-2)

 

Easiest to take this in "pieces"

 

2              3                    2          (x - 1)             2(x - 1)

_   +     ____    =        ____   *   ______  =     _______  

x           (x - 1)               x              3                    3x

 

 

So now...we have

 

2(x - 1)               1                    2(x - 1)          (2x- 2)            2(x - 1) * 2 (x - 1)                4(x - 1)^2

______    +     ______    =   _________  *    ______   =     _________________  =    _________

  3x                  (2x - 2)                3x                   1                         3x                                   3x

 

 

 

cool cool cool

 Jan 31, 2019
 #9
avatar+96080 
+2

6) what is g(f(x)) if f(x) = 2x^2 - x and g(x) = x^(-1/2)

 

g(f(x))   just means that we are putting  "f" into "g"

 

So we have

 

(2x^2 - x)^(-1/2)  =      1 / √[ 2x^2 - x ]

 

And that's it...!!!

 

 

cool cool cool

 Jan 31, 2019

32 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.