A function f has a horizontal asymptote of y = -4, a vertical asymptote of x = 3, and an x-intercept at (1,0). Part (a): Let f be of the form f(x) = (ax+b)/(x+c).Find an expression for f(x). Part (b): Let f be of the form f(x) = (rx+s)/(2x+t).Find an expression for f(x).
(a): Let f be of the form f(x) = (ax+b)/(x+c).Find an expression for f(x).
Hello daddypig!
(a)
\(\color{blue}f(x)=\frac{1}{x-3}-4\\ f(x)=\frac{1}{x-3}-\frac{4(x-3)}{x-3}\\ f(x)=\frac{1-(4x-12)}{x-3}\)
\( f(x)=\frac{-4x+13}{x-3}\)
\(\large f(x)=\frac{-4x+13}{x-3}\)
a = - 4
b = 13
c = - 3
!
(b): Let f be of the form f(x) = (rx+s)/(2x+t).Find an expression for f(x).
Hello daddypig!
(b)
\(\color{blue}f(x)=\frac{1}{x-3}-4\\ f(x)=\frac{1}{x-3}-\frac{4(x-3)}{x-3}\\ f(x)=\frac{1-(4x-12)}{x-3} \)
\(2x+t=x-3\\ t=-x-3\)
\(\large f(x)=\frac{-4x+13}{2x+(-x-3)}\)
r = - 4
s = 13
t = (- x - 3)
!