+0  
 
0
2738
4
avatar+42 

Using the completing-the-square method, find the vertex of the function f(x) = –2x2 + 12x + 5 and indicate whether it is a minimum or a maximum and at what point.

A. Maximum at (–3, 5)

B. Minimum at (–3, 5)

C. Maximum at (3, 23)

D. Minimum at (3, 23)

 Oct 13, 2016

Best Answer 

 #1
avatar+12530 
+10

C. Maximum at (3, 23)

 

laugh

 Oct 13, 2016
 #1
avatar+12530 
+10
Best Answer

C. Maximum at (3, 23)

 

laugh

Omi67 Oct 13, 2016
 #1
avatar+12530 
0

C. Maximum at (3, 23)

 

laugh

Omi67 Oct 13, 2016
 #3
avatar+129852 
+5

 f(x) = –2x2 + 12x + 5   factor out  the "-2"  on the right on the first two terms

 

f(x)  = -2 (x^2 - 6x)  + 5    take 1/2 of the coefficient on x (i.e., "-6"→ ( -3)^2  → 9)......square it and add an subtract it within the parentheses

 

f(x)   = -2(x^2 - 6x + 9 - 9) + 5   simplify

 

f(x) -2 ( x ^2 - 6x + 9)  + 18 + 5   factor the expression in the parenthese

 

f(x)   =  -2 (x - 3)^2 + 23

 

The vertex is  at (3, 23)......since there is a  "negative" in front of the first term, this is a maximum

 

Here's the graph :   https://www.desmos.com/calculator/smeqago7cm

 

 

cool cool cool

 Oct 13, 2016
 #1
avatar+129852 
0

 f(x) = –2x2 + 12x + 5   factor out  the "-2"  on the right on the first two terms

 

f(x)  = -2 (x^2 - 6x)  + 5    take 1/2 of the coefficient on x (i.e., "-6"→ ( -3)^2  → 9)......square it and add an subtract it within the parentheses

 

f(x)   = -2(x^2 - 6x + 9 - 9) + 5   simplify

 

f(x) -2 ( x ^2 - 6x + 9)  + 18 + 5   factor the expression in the parenthese

 

f(x)   =  -2 (x - 3)^2 + 23

 

The vertex is  at (3, 23)......since there is a  "negative" in front of the first term, this is a maximum

 

Here's the graph :   https://www.desmos.com/calculator/smeqago7cm

 

 

cool cool cool

CPhill Oct 13, 2016

1 Online Users