A circle passes through the point (0,1), and is tangent to the parabola y = x^2 at (2,4). Find the center of the circle.
The answer should be in the form (a,b), the answer should be a fraction not decimal.
Find the center of the circle.
Hello proyaop!
f(x)=x2dydx=2x=2⋅2=4mg=−14 | Pg(2,4)g(x)=−14(x−2)+4g(x)=−14x+92
h(x)=4−12−0x+1h(x)=32x+1
mi=−23 | Pi(1,2.5)i(x)=−23(x−1)+52i(x)=−23x+196
i(x)=g(x)−23x+196=−14x+92512x=−86
xC=−165
y=−14x+92y=−14⋅(−165)+92yC=5310
The center of the circle is PC(−165,5310)
!