Hi proyaop,
The general term is
\(\displaystyle {\binom{9}{n}(\sqrt x)^{9-n}(\frac{5}{x})^n}\\~\\ =\displaystyle {\binom{9}{n}(x)^{\frac{9-n}{2}}(\frac{5}{x^n})}\\~\\ =\displaystyle {\binom{9}{n}*5(x)^{\frac{9-n-2n}{2}}}\\~\\ =\displaystyle {\binom{9}{n}*5(x)^{\frac{9-3n}{2}}}\\~\\\)
You want the constant term so
\(\frac{9-3x}{2}=0\\ 9-3x=0\\ 9=3x\\ x=3\)
So the contatn term is
\(=\displaystyle {\binom{9}{n}*5(x)^{\frac{9-3n}{2}}}\\~\\ =\displaystyle {\binom{9}{3}*5(x)^{\frac{9-3*3}{2}}}\\~\\ =\binom{9}{3}*5\\~\\ =84*5\\~\\ =420\)
You do need to check my working for careless mistakes of course.
LaTex:
\displaystyle {\binom{9}{n}(\sqrt x)^{9-n}(\frac{5}{x})^n}\\~\\
=\displaystyle {\binom{9}{n}(x)^{\frac{9-n}{2}}(\frac{5}{x^n})}\\~\\
=\displaystyle {\binom{9}{n}*5(x)^{\frac{9-n-2n}{2}}}\\~\\
=\displaystyle {\binom{9}{n}*5(x)^{\frac{9-3n}{2}}}\\~\\