x(x+29)=1750
x2+29x−1750=0
now use the quadratic formula to find the values of x that satisfy this
a=1
b=29
c=-1750
r1,r2=−b±√b2−4ac2a
(−29+√292−4×1×(−1750))(2×1)=29.77471061452576
(−29−√292−4×1×(−1750))(2×1)=−58.77471061452576
and these are the two values of x that satisfy the original equation
29.7747×(29.7747+29)=1749.99906009
(−58.7747×(−58.7747+29))=1749.99906009
.x(x+29)=1750
x2+29x−1750=0
now use the quadratic formula to find the values of x that satisfy this
a=1
b=29
c=-1750
r1,r2=−b±√b2−4ac2a
(−29+√292−4×1×(−1750))(2×1)=29.77471061452576
(−29−√292−4×1×(−1750))(2×1)=−58.77471061452576
and these are the two values of x that satisfy the original equation
29.7747×(29.7747+29)=1749.99906009
(−58.7747×(−58.7747+29))=1749.99906009