+0  
 
0
1090
1
avatar
  1. Which ordered pairs are solutions to the inequality 5𝑥 − 𝑦 ≤ 20 Select each correct answer
    1. (10,8)
    2. (5,6)
    3. C. (2,1)
    4. D. (6,4) 

 

Find the slope between these points and graph. (5,2) and (-1,4)

 

 

The equation for this line is 𝑦 > 9

Graph and shade accordingly

 Oct 4, 2017

Best Answer 

 #1
avatar+9481 
+2

5x - y  ≤  20

 

We have to test each ordered pair to see if it makes the equation true.

 

1.   (10, 8)

5(10) - 8  ≤  20

50 - 8  ≤  20

42  ≤  20     →     false

 

2.   (5, 6)

5(5) - 6  ≤  20

25 - 6  ≤  20

19  ≤  20     →     true

 

3.   (2, 1)

5(2)  -  1  ≤  20

10  -  1  ≤  20

9  ≤  20       →     true

 

4.   (6, 4)

5(6) - 4  ≤  20

30 - 4  ≤  20

26  ≤  20     →     false

 

The ordered pairs that make the equation true are solutions to the inequality.

 

----------

 

slope  =  \(\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{4-2}{-1-5}\,=\,\frac{2}{-6}\,=\,-\frac{1}{3}\)

 

----------

 

y  >  9

 

First, draw a dotted line at  y = 9 ,

then shade all of the values where y is greater than 9 , which is all of the values above y = 9 .... like this.

 Oct 4, 2017
edited by hectictar  Oct 4, 2017
 #1
avatar+9481 
+2
Best Answer

5x - y  ≤  20

 

We have to test each ordered pair to see if it makes the equation true.

 

1.   (10, 8)

5(10) - 8  ≤  20

50 - 8  ≤  20

42  ≤  20     →     false

 

2.   (5, 6)

5(5) - 6  ≤  20

25 - 6  ≤  20

19  ≤  20     →     true

 

3.   (2, 1)

5(2)  -  1  ≤  20

10  -  1  ≤  20

9  ≤  20       →     true

 

4.   (6, 4)

5(6) - 4  ≤  20

30 - 4  ≤  20

26  ≤  20     →     false

 

The ordered pairs that make the equation true are solutions to the inequality.

 

----------

 

slope  =  \(\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{4-2}{-1-5}\,=\,\frac{2}{-6}\,=\,-\frac{1}{3}\)

 

----------

 

y  >  9

 

First, draw a dotted line at  y = 9 ,

then shade all of the values where y is greater than 9 , which is all of the values above y = 9 .... like this.

hectictar Oct 4, 2017
edited by hectictar  Oct 4, 2017

1 Online Users