+0  
 
0
251
1
avatar
  1. Which ordered pairs are solutions to the inequality 5𝑥 − 𝑦 ≤ 20 Select each correct answer
    1. (10,8)
    2. (5,6)
    3. C. (2,1)
    4. D. (6,4) 

 

Find the slope between these points and graph. (5,2) and (-1,4)

 

 

The equation for this line is 𝑦 > 9

Graph and shade accordingly

Guest Oct 4, 2017

Best Answer 

 #1
avatar+7155 
+2

5x - y  ≤  20

 

We have to test each ordered pair to see if it makes the equation true.

 

1.   (10, 8)

5(10) - 8  ≤  20

50 - 8  ≤  20

42  ≤  20     →     false

 

2.   (5, 6)

5(5) - 6  ≤  20

25 - 6  ≤  20

19  ≤  20     →     true

 

3.   (2, 1)

5(2)  -  1  ≤  20

10  -  1  ≤  20

9  ≤  20       →     true

 

4.   (6, 4)

5(6) - 4  ≤  20

30 - 4  ≤  20

26  ≤  20     →     false

 

The ordered pairs that make the equation true are solutions to the inequality.

 

----------

 

slope  =  \(\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{4-2}{-1-5}\,=\,\frac{2}{-6}\,=\,-\frac{1}{3}\)

 

----------

 

y  >  9

 

First, draw a dotted line at  y = 9 ,

then shade all of the values where y is greater than 9 , which is all of the values above y = 9 .... like this.

hectictar  Oct 4, 2017
edited by hectictar  Oct 4, 2017
 #1
avatar+7155 
+2
Best Answer

5x - y  ≤  20

 

We have to test each ordered pair to see if it makes the equation true.

 

1.   (10, 8)

5(10) - 8  ≤  20

50 - 8  ≤  20

42  ≤  20     →     false

 

2.   (5, 6)

5(5) - 6  ≤  20

25 - 6  ≤  20

19  ≤  20     →     true

 

3.   (2, 1)

5(2)  -  1  ≤  20

10  -  1  ≤  20

9  ≤  20       →     true

 

4.   (6, 4)

5(6) - 4  ≤  20

30 - 4  ≤  20

26  ≤  20     →     false

 

The ordered pairs that make the equation true are solutions to the inequality.

 

----------

 

slope  =  \(\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{4-2}{-1-5}\,=\,\frac{2}{-6}\,=\,-\frac{1}{3}\)

 

----------

 

y  >  9

 

First, draw a dotted line at  y = 9 ,

then shade all of the values where y is greater than 9 , which is all of the values above y = 9 .... like this.

hectictar  Oct 4, 2017
edited by hectictar  Oct 4, 2017

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.