Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+2
839
1
avatar+619 

a) Suppose f(x)=95x4. Does $f$ have an inverse? If so, find $f^{-1}(20)$.

 

b) Suppose g(x)=4x2+8x+13. Does $g$ have an inverse? If so, find $g^{-1}(25)$

 

c) Suppose h(x)=1x for $x>0$. Does $h$ have an inverse? If so, find $h^{-1}(4)$.

 Dec 5, 2017

Best Answer 

 #1
avatar+9488 
+3

a)  f(x)  =  95x - 4          This has an inverse because it is just a linear equation.

 

y  =  95x - 4        To find the inverse, solve this equation for  x , so add  4  to both sides.   

 

y + 4  =  95x       Multiply both sides by  59 .

 

59(y + 4)  =  x     So the inverse function is...

 

f-1(x)  =  59(x + 4)      And to find  f-1(20) , plug in  20  for  x  into this function.

 

f-1(20)  =  59(20 + 4)   =   59(24)   =   403

 

 

b)  g(x)  =  4x2 + 8x + 13

 

g(x)  does not have an inverse function because it would have two different  y  values for an  x  value, and for an equaton to qualify as a function, there can only be one  y  value for every  x  value.

 

 

c)  h(x)  =  1x  for  x > 0        Yes this has an inverse.

 

y  =  1x             To find the inverse, solve this equation for  x .

 

yx  =  1

 

x  =  1y                 Square both sides.

 

x  =  1y2                    So the inverse function is..

 

f-1(x)  =  1x2   for   x > 0

 

f-1(4)  =  142   =   116

 Dec 5, 2017
 #1
avatar+9488 
+3
Best Answer

a)  f(x)  =  95x - 4          This has an inverse because it is just a linear equation.

 

y  =  95x - 4        To find the inverse, solve this equation for  x , so add  4  to both sides.   

 

y + 4  =  95x       Multiply both sides by  59 .

 

59(y + 4)  =  x     So the inverse function is...

 

f-1(x)  =  59(x + 4)      And to find  f-1(20) , plug in  20  for  x  into this function.

 

f-1(20)  =  59(20 + 4)   =   59(24)   =   403

 

 

b)  g(x)  =  4x2 + 8x + 13

 

g(x)  does not have an inverse function because it would have two different  y  values for an  x  value, and for an equaton to qualify as a function, there can only be one  y  value for every  x  value.

 

 

c)  h(x)  =  1x  for  x > 0        Yes this has an inverse.

 

y  =  1x             To find the inverse, solve this equation for  x .

 

yx  =  1

 

x  =  1y                 Square both sides.

 

x  =  1y2                    So the inverse function is..

 

f-1(x)  =  1x2   for   x > 0

 

f-1(4)  =  142   =   116

hectictar Dec 5, 2017

1 Online Users

avatar