+0  
 
+2
40
1
avatar+497 

a) Suppose \(f(x)=\frac 95x-4\). Does $f$ have an inverse? If so, find $f^{-1}(20)$.

 

b) Suppose \(g(x)=4x^2+8x+13\). Does $g$ have an inverse? If so, find $g^{-1}(25)$

 

c) Suppose \(h(x)=\frac{1}{\sqrt x}\) for $x>0$. Does $h$ have an inverse? If so, find $h^{-1}(4)$.

 
michaelcai  Dec 5, 2017

Best Answer 

 #1
avatar+5552 
+3

a)  f(x)  =  \(\frac95\)x - 4          This has an inverse because it is just a linear equation.

 

y  =  \(\frac95\)x - 4        To find the inverse, solve this equation for  x , so add  4  to both sides.   

 

y + 4  =  \(\frac95\)x       Multiply both sides by  \(\frac59\) .

 

\(\frac59\)(y + 4)  =  x     So the inverse function is...

 

f-1(x)  =  \(\frac59\)(x + 4)      And to find  f-1(20) , plug in  20  for  x  into this function.

 

f-1(20)  =  \(\frac59\)(20 + 4)   =   \(\frac59\)(24)   =   \(\frac{40}3\)

 

 

b)  g(x)  =  4x2 + 8x + 13

 

g(x)  does not have an inverse function because it would have two different  y  values for an  x  value, and for an equaton to qualify as a function, there can only be one  y  value for every  x  value.

 

 

c)  h(x)  =  \(\frac1{\sqrt{x}}\)  for  x > 0        Yes this has an inverse.

 

y  =  \(\frac1{\sqrt{x}}\)             To find the inverse, solve this equation for  x .

 

y\(\sqrt{x}\)  =  1

 

\(\sqrt{x}\)  =  \(\frac1{y}\)                 Square both sides.

 

x  =  \(\frac1{y^2}\)                    So the inverse function is..

 

f-1(x)  =  \(\frac1{x^2}\)   for   x > 0

 

f-1(4)  =  \(\frac{1}{4^2}\)   =   \(\frac{1}{16}\)

 
hectictar  Dec 5, 2017
Sort: 

1+0 Answers

 #1
avatar+5552 
+3
Best Answer

a)  f(x)  =  \(\frac95\)x - 4          This has an inverse because it is just a linear equation.

 

y  =  \(\frac95\)x - 4        To find the inverse, solve this equation for  x , so add  4  to both sides.   

 

y + 4  =  \(\frac95\)x       Multiply both sides by  \(\frac59\) .

 

\(\frac59\)(y + 4)  =  x     So the inverse function is...

 

f-1(x)  =  \(\frac59\)(x + 4)      And to find  f-1(20) , plug in  20  for  x  into this function.

 

f-1(20)  =  \(\frac59\)(20 + 4)   =   \(\frac59\)(24)   =   \(\frac{40}3\)

 

 

b)  g(x)  =  4x2 + 8x + 13

 

g(x)  does not have an inverse function because it would have two different  y  values for an  x  value, and for an equaton to qualify as a function, there can only be one  y  value for every  x  value.

 

 

c)  h(x)  =  \(\frac1{\sqrt{x}}\)  for  x > 0        Yes this has an inverse.

 

y  =  \(\frac1{\sqrt{x}}\)             To find the inverse, solve this equation for  x .

 

y\(\sqrt{x}\)  =  1

 

\(\sqrt{x}\)  =  \(\frac1{y}\)                 Square both sides.

 

x  =  \(\frac1{y^2}\)                    So the inverse function is..

 

f-1(x)  =  \(\frac1{x^2}\)   for   x > 0

 

f-1(4)  =  \(\frac{1}{4^2}\)   =   \(\frac{1}{16}\)

 
hectictar  Dec 5, 2017

19 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details