+0  
 
+5
1029
14
avatar+5265 

The area A of a rectangle with a perimeter of 32 cm is modeled as -x2+16x, where x is the width in cm. What is that maximum area of the rectangle?

 Oct 25, 2016

Best Answer 

 #9
avatar+37146 
+11

-x^2 +16x = 32 

-x^2 + 16x - 32 = 0      

 

This is a parabola, with the maximum at x=8

 

-(8^2)+16(8) = 64 cm^2 maximum area

 Oct 25, 2016
 #1
avatar+257 
0

try it in the calculater the nimber you just gave me and tell me what you get ok then we will go on from there alright

 Oct 25, 2016
 #2
avatar+5265 
+6

It's not asking to substitute the perimeter. It's asking what the maximum area could be for that rectangle.

rarinstraw1195  Oct 25, 2016
 #3
avatar+257 
0

oh ok multiple choice yes or no if not tell me ok

 Oct 25, 2016
 #4
avatar+5265 
+5

Not a multiple choice. 

rarinstraw1195  Oct 25, 2016
 #5
avatar+257 
0

ok then 

ok the answer is 48^8 sq

 Oct 25, 2016
 #6
avatar+5265 
+5

I dont believe that's right. Good try though. 

rarinstraw1195  Oct 25, 2016
 #7
avatar+257 
0

How old are oyui?

 Oct 25, 2016
 #8
avatar+5265 
+5

I dont believe this is relevant information to the question.

rarinstraw1195  Oct 25, 2016
 #9
avatar+37146 
+11
Best Answer

-x^2 +16x = 32 

-x^2 + 16x - 32 = 0      

 

This is a parabola, with the maximum at x=8

 

-(8^2)+16(8) = 64 cm^2 maximum area

ElectricPavlov Oct 25, 2016
 #12
avatar+37146 
0

Maybe easier:

 

-x^2 +16x    is a parabola with a maximum value of  64   at x= 8

ElectricPavlov  Oct 25, 2016
 #10
avatar+257 
0

lol i am not hitting on you haha lmfao

 Oct 25, 2016
 #11
avatar+5265 
+1

Ok, but my age is not a relevant part of the question.

rarinstraw1195  Oct 25, 2016
 #13
avatar+37146 
0


ERROR    though it gives the correct answer

 

ignore my   -x^2+16 = 32 answer    it is incorrect

 

use the    -x^2+16  is a parabola answer      max value = 64 at x = 8

 Oct 25, 2016
 #14
avatar+5265 
0

Thank you for the help!

rarinstraw1195  Oct 25, 2016

0 Online Users