We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
57
3
avatar

Find \(a\) such that \(ax^2+12x+9\) is the square of a binomial.

 Oct 20, 2019
 #1
avatar+435 
+5

Step 1: Square the first term of the binomial. Step 2: Multiply the first term and last term of the binomial together and then double that quantity (in other words multiply by 2). Step 3: Square the last term of the binomial.

 Oct 20, 2019
 #2
avatar
0

the square of a binomial: (xy+b)(xy+b)=x^2y^2+2xyb+b^2

9=3^2=b

12x=2xyb

12=yb

12=3y

y=4

a=4

 Oct 21, 2019
 #3
avatar+23324 
+2

Find \(a\)  such that \(ax^2+12x+9\) is the square of a binomial.

 

\(\begin{array}{|rcll|} \hline ax^2+12x+9 &=& a(x-x_0)^2 \\\\ ax^2+12x+9 &=& a(x^2-2xx_0+x_0^2) \\ ax^2+12x+9 &=& ax^2-2xx_0a+x_0^2a \\ 12x+9 &=& -2xx_0a+x_0^2a \quad | \quad \text{compare: } 12 = -2x_0a,\ 9 = x_0^2a \\ \hline && \begin{array}{|rcll|} \hline 12 &=& -2x_0a \\ 6 &=& -x_0a \\ \mathbf{x_0} &=& \mathbf{- \dfrac{6}{a} } \\\\ 9 &=& x_0^2a \\ 9 &=& \left(- \dfrac{6}{a}\right)^2a \\ 9 &=& \dfrac{36a}{a^2} \\ 9 &=& \dfrac{36 }{a } \\ a &=& \dfrac{36 }{9 } \\ \mathbf{a} &=& \mathbf{4} \\ \hline \end{array} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x_0 &=& -\dfrac{6}{a} \quad | \quad a = 4 \\\\ x_0 &=& -\dfrac{6}{4} \\\\ \mathbf{x_0} &=& \mathbf{-\dfrac{3}{2} } \\ \hline && a(x-x_0)^2 \\ &=& 4\left(x+\dfrac{3}{2}\right)^2 \\ &=& \left(2\left(x+\dfrac{3}{2}\right)\right)^2 \\ &=& \left( 2x+2\cdot\dfrac{3}{2} \right)^2 \\ &=& ( 2x+3 )^2 \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{4x^2+12x+9} &=& \mathbf{( 2x+3 )^2} \\ \hline \end{array}\)

 

laugh

 Oct 21, 2019
edited by heureka  Oct 21, 2019

6 Online Users

avatar