+0

# Algebra II Question

-1
40
2

If j, k, and l are positive with jk = 24, jl = 48, and kl = 18, find j + k + l.

Guest Apr 4, 2018
Sort:

#1
+85958
+1

If j, k, and l are positive with jk = 24, jl = 48, and kl = 18, find j + k + l.

jk  = 24 ⇒  24/j  = k

jl = 48  ⇒  48/j  = l

kl = 18

So

kl  = 18

(24/j) (48/j)  = 18

1152 / j^2  = 18

j^2  = 1152/18

j^2  = 64   take the positive root

j =  8

So.....24 / j = k   ⇒    24 / 8  = k ......  3  = k

And  48 / j  = l ⇒   48 / 8  = l    ......  6  = l

So

j + k + l    = 8 + 3  +  6  =   17

CPhill  Apr 4, 2018
#2
+19207
0

If j, k, and l are positive with jk = 24, jl = 48, and kl = 18,

find j + k + l.

1.

$$\begin{array}{|rcll|} \hline jk\cdot jl \cdot kl = (jkl)^2 &=& 24\cdot 48\cdot 18 \\ &=& 20736 \\ jkl &=& \sqrt{20736} \\ \mathbf{jkl} &\mathbf{=}& \mathbf{ 144} \\ \hline \end{array}$$

2.

$$\begin{array}{|rcll|} \hline j+k+l &=& \dfrac{jk\cdot jl}{jkl} + \dfrac{jk\cdot kl}{jkl} + \dfrac{jl\cdot kl}{jkl} \\ &=& \dfrac{jk\cdot jl+jk\cdot kl+jl\cdot kl}{jkl} \\ &=& \dfrac{24\cdot 48+24\cdot 18+48\cdot 18}{144} \\ \mathbf{j+k+l} &\mathbf{=}& \mathbf{ 17} \\ \hline \end{array}$$

heureka  Apr 5, 2018

### 22 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details