Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
46
1
avatar+789 

Find constants A and B such that 

(x + 17)/(x^2 - x - 2) = A/(x - 2) + B/(x + 1)

 

for all x such that $x \neq -1$ and $x \neq 2$. Give your answer as the ordered pair (A,B).

 Feb 15, 2024

Best Answer 

 #1
avatar+410 
+2

This is pretty simple partial fraction decomposition. 

Our first indication that partial fraction decomposition works is (x2)(x+1)=x2x2

x+17x2x2=Ax2+Bx+1, and we make the denominators equal, x+17x2x2=A(x+1)(x+1)(x2)+B(x2)(x+1)(x2), and x+17=A(x+1)+B(x2). To solve, we plug in some special values, like 2, so 19 = 3A, A = 19/3. Similarly, by plugging in -1, we get B = -16/3. So out answer is A = 19/3, B = -16/3.

 Feb 15, 2024
 #1
avatar+410 
+2
Best Answer

This is pretty simple partial fraction decomposition. 

Our first indication that partial fraction decomposition works is (x2)(x+1)=x2x2

x+17x2x2=Ax2+Bx+1, and we make the denominators equal, x+17x2x2=A(x+1)(x+1)(x2)+B(x2)(x+1)(x2), and x+17=A(x+1)+B(x2). To solve, we plug in some special values, like 2, so 19 = 3A, A = 19/3. Similarly, by plugging in -1, we get B = -16/3. So out answer is A = 19/3, B = -16/3.

hairyberry Feb 15, 2024

3 Online Users

avatar
avatar