There are values A and B such that (Bx-11) / (x^2-7x+10) = A/(x-2) - 3/(x-5).
Find A+B
So we have that
[Bx - 11 ] / [ x^2 -7x + 10] = A / [ x -2 ] + 3 / [x - 5]
Using partial fractions we can simplify this as
Bx - 11 = A[x - 5] + 3 [ x - 2] simplify more
Bx - 11 = Ax - 5A + 3x - 6
Bx - 11 = [ A + 3 ] x + [ -5A - 6 ] equate coefficients
B = A + 3
-11 = -5A - 6 ⇒ -5 = -5A ⇒ A = 1
So....B = 1 + 3 = 4
So....A + B = 1 + 4 = 5
🎅🎅🎅🎅🎅
🥳🥳🥳🥳🥳