The number (\sqrt{2}+\sqrt{3}+1)^3 can be written in the form a\sqrt{2} + b\sqrt{3} + c\sqrt{6} + d, where a, b, and c are integers. What is a+b+c+d?
\( (\sqrt{2}+\sqrt{3}+1)^3\)
\(a\sqrt{2} + b\sqrt{3} + c\sqrt{6} + d \)
[ sqrt 2 + sqrt 3 + 1)^3 =
16 + 14 sqrt(2) + 12 sqrt(3) + 6 sqrt(6)
a= 14
b = 12
c = 6
d = 16
Sum = 48