Calculate sqrt(60x)*sqrt(12x)*sqrt(63x)*sqrt(42x). Express your answer in simplest radical form in terms of x. Note: When entering a square root with more than one character, you must use parentheses or brackets. For example, you should enter sqrt(14) as "sqrt(14)" or "sqrt{14}".
\( \sqrt{60x} = \sqrt{4} * \sqrt{15x} = 2\sqrt{15x}\)
\(\sqrt{12x} = \sqrt{4} * \sqrt{3x} = 2\sqrt{3x}\)
\(\sqrt{63x} = \sqrt{9} * \sqrt{7x} = 3\sqrt{7x}\)
\(\sqrt{42x} = \sqrt{42x}\)
Now, multiply all the radicals and you get \(252x^2 \sqrt 30\).
I think...
Let's see
\(\sqrt{60x}*\sqrt{12x}*\sqrt{63x}*\sqrt{42x}\\ =\sqrt{60}*\sqrt{12}*\sqrt{63}*\sqrt{42}*\sqrt{x^4}\\ =2\sqrt{3*5}*2\sqrt{3}*3\sqrt{7}*\sqrt{7*6}*x^2\\ =2*2*3 *\sqrt{3*5*3*7*7*6}*x^2\\ =12 *3*7*\sqrt{5*6}*x^2\\ =12 *3*7*\sqrt{5*6}*x^2\\ =252\sqrt{30}\;x^2\)
There you go BilderBoi, we are in full agreement