+0  
 
+1
60
2
avatar

For what value of k is there exactly one solution to the system of equations:  y = 2x^2 + kx + 6, y = -x + 4

Guest Feb 13, 2018
Sort: 

2+0 Answers

 #1
avatar+12227 
+2

2x^2+kx+6 = -x+4

2x^2+ x(k+1) +2 = 0

 

(2x+     )(x+   ) = 0     the only two factors which multiply to '2' are 1 and 2   or -1 and -2

(2x+1) (x+2)              results in TWO values of x (-1/2 and -1)that would satisfy the system of equations...no good.

(2x+2)(x+1) = 0         would result in ONE values for 'x' :   (-1)    ....we want only ONE (Per the question)

                                     so this would make k+1 = 4   or k=3

 

Multiply this out to get     2 x^2 + 4x +2 =0        so  k+1 = 4   .... or  k=3

 

(2x-2)(x-1) =0                works  for only   x =1

    multiply it out     2x^2 -4x+2       means       k+1 = -4       or k=-5

 

(2x-1)(x-2)      has two solutions    x = 1/2   and x= 2     no good

 

SO k = 3  or -5    results in only one solution for the system of equations.

 

Graphically:

ElectricPavlov  Feb 13, 2018
 #2
avatar+6943 
+1

y   =   2x2 + kx + 6

                                        We are given that   y = -x + 4  , so we can substitute  -x + 4  in for  y .

-x + 4  =  2x2 + kx + 6

                                        Add  x  to both sides of the equation.

4   =   2x2 + kx + x + 6

 

4   =   2x2 + (k + 1)x + 6

                                        Subtract  4  from both sides of the equation.

0   =   2x2 + (k + 1)x + 2

 

This equation will have one solution when...

 

(k + 1)2 - 4(2)(2)   =   0

 

(k + 1)2 - 16   =   0

 

(k + 1)2   =   16

 

k + 1   =   ± 4

 

k   =   ± 4 - 1

 

k   =   4 - 1   =   3          or          k   =   -4 - 1   =   -5

hectictar  Feb 13, 2018

12 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details