+0  
 
0
103
1
avatar+4 

Wanted to check if essay writer solved my problem X(squared) - 6x - 39 = 0 right:

 

x2 - 6x - 39 = 0

D = b2 - 4ac = (-6)2 - 4·1·(-39) = 36 + 156 = 192

x1 = 6 - √1922·1 = 3 - 4√3 ≈ -3.9282032302755088

x2 = 6 + √1922·1 = 3 + 4√3 ≈ 9.928203230275509

 

Is it correct?

florachavezz  Feb 22, 2018
Sort: 

1+0 Answers

 #1
avatar+19344 
0

Wanted to check if essay writer solved my problem X(squared) - 6x - 39 = 0 right:

 

It is correct!

 

We proof: \(x_1 = 3-4\sqrt{3}:\)

\(\large{ \begin{array}{|rcll|} \hline x^2-6x-39 &=& 0 \quad & | \quad x_1 = 3 - 4\sqrt{3} \\ (3 - 4\sqrt{3})^2-6(3 - 4\sqrt{3})-39 & \overset{?}{=} & 0 \\ 9 - 24\sqrt{3} + 16\cdot 3 - 18 + 24\sqrt{3} - 39 & \overset{?}{=} & 0 \\ 9 + 16\cdot 3 - 18 - 39 & \overset{?}{=} & 0 \\ 9 + 48 - 18 - 39 & \overset{?}{=} & 0 \\ 57-57 & \overset{?}{=} & 0 \\ 0 & = & 0\ \checkmark \\ \hline \end{array} }\)

 

We proof \(x_2 = 3+4\sqrt{3}:\)

\(\large{ \begin{array}{|rcll|} \hline x^2-6x-39 &=& 0 \quad & | \quad x_2 = 3 + 4\sqrt{3} \\ (3 + 4\sqrt{3})^2-6(3 + 4\sqrt{3})-39 & \overset{?}{=} & 0 \\ 9 + 24\sqrt{3} + 16\cdot 3 - 18 - 24\sqrt{3} - 39 & \overset{?}{=} & 0 \\ 9 + 16\cdot 3 - 18 - 39 & \overset{?}{=} & 0 \\ 9 + 48 - 18 - 39 & \overset{?}{=} & 0 \\ 57-57 & \overset{?}{=} & 0 \\ 0 & = & 0\ \checkmark \\ \hline \end{array} } \)

 

laugh

heureka  Feb 22, 2018

27 Online Users

avatar
avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy