+0  
 
0
195
1
avatar+4 

Wanted to check if essay writer solved my problem X(squared) - 6x - 39 = 0 right:

 

x2 - 6x - 39 = 0

D = b2 - 4ac = (-6)2 - 4·1·(-39) = 36 + 156 = 192

x1 = 6 - √1922·1 = 3 - 4√3 ≈ -3.9282032302755088

x2 = 6 + √1922·1 = 3 + 4√3 ≈ 9.928203230275509

 

Is it correct?

florachavezz  Feb 22, 2018
 #1
avatar+20164 
0

Wanted to check if essay writer solved my problem X(squared) - 6x - 39 = 0 right:

 

It is correct!

 

We proof: \(x_1 = 3-4\sqrt{3}:\)

\(\large{ \begin{array}{|rcll|} \hline x^2-6x-39 &=& 0 \quad & | \quad x_1 = 3 - 4\sqrt{3} \\ (3 - 4\sqrt{3})^2-6(3 - 4\sqrt{3})-39 & \overset{?}{=} & 0 \\ 9 - 24\sqrt{3} + 16\cdot 3 - 18 + 24\sqrt{3} - 39 & \overset{?}{=} & 0 \\ 9 + 16\cdot 3 - 18 - 39 & \overset{?}{=} & 0 \\ 9 + 48 - 18 - 39 & \overset{?}{=} & 0 \\ 57-57 & \overset{?}{=} & 0 \\ 0 & = & 0\ \checkmark \\ \hline \end{array} }\)

 

We proof \(x_2 = 3+4\sqrt{3}:\)

\(\large{ \begin{array}{|rcll|} \hline x^2-6x-39 &=& 0 \quad & | \quad x_2 = 3 + 4\sqrt{3} \\ (3 + 4\sqrt{3})^2-6(3 + 4\sqrt{3})-39 & \overset{?}{=} & 0 \\ 9 + 24\sqrt{3} + 16\cdot 3 - 18 - 24\sqrt{3} - 39 & \overset{?}{=} & 0 \\ 9 + 16\cdot 3 - 18 - 39 & \overset{?}{=} & 0 \\ 9 + 48 - 18 - 39 & \overset{?}{=} & 0 \\ 57-57 & \overset{?}{=} & 0 \\ 0 & = & 0\ \checkmark \\ \hline \end{array} } \)

 

laugh

heureka  Feb 22, 2018

24 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.