+0

Algebra Question

0
368
2
+52

At a point on the ground 80ft from the base of a​ tree, the distance to the top of the tree is

11ft more than 2 times the height of the tree. Find the height of the tree.

The height of the tree is nothing  ft.

​(Simplify your answer. Round to the nearest foot as​ needed.)

yojaymarojas  May 13, 2017

Best Answer

#1
+7339
+4

Here, h is the height of the tree.

from the Pythagorean theorem:

h2 + 802 = (11 + 2h)2

h2 + 6400 = (11 + 2h)(11 + 2h)

h2 + 6400 = 121 + 44h + 4h2            Subtract h2 and 6400 from both sides.

0 = -6279 + 44h + 3h2                      Rearrange.

0 = 3h2 + 44h - 6279                        Use quadratic formula to solve for h.

$$h = {-44 \pm \sqrt{44^2-4(3)(-6279)} \over 2(3)} \\~\\ h = \frac{-44\pm278}{6} \\~\\ h=\frac{-44+278}{6}=39 \qquad\text{or}\qquad h=\frac{-44-278}{6}=-\frac{161}3$$

So...the height of the tree must be 39 feet

hectictar  May 13, 2017
#1
+7339
+4
Best Answer

Here, h is the height of the tree.

from the Pythagorean theorem:

h2 + 802 = (11 + 2h)2

h2 + 6400 = (11 + 2h)(11 + 2h)

h2 + 6400 = 121 + 44h + 4h2            Subtract h2 and 6400 from both sides.

0 = -6279 + 44h + 3h2                      Rearrange.

0 = 3h2 + 44h - 6279                        Use quadratic formula to solve for h.

$$h = {-44 \pm \sqrt{44^2-4(3)(-6279)} \over 2(3)} \\~\\ h = \frac{-44\pm278}{6} \\~\\ h=\frac{-44+278}{6}=39 \qquad\text{or}\qquad h=\frac{-44-278}{6}=-\frac{161}3$$

So...the height of the tree must be 39 feet

hectictar  May 13, 2017
#2
+92808
+2

Let the tree height  = h

And we have a rigrt triangle such that :

h^2  +  80^2   =  (2h + 11)^2     simplify

h^2  +  6400  =  4h^2 + 44h + 121

3h^2 + 44h  - 6279  = 0

Solving this  using  the  quadratic formula and taking the positive answer  we get that h =39 ft

CPhill  May 13, 2017

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.