The real numbers $a$ and $b$ satisfy $a - b = 1$ and $a^3 - b^3 = 1.$
(a) Find all possible values of $ab.$
(b) Find all possible values of $a + b.$
(c) Find all possible values of $a$ and $b.$
C)
We know a-b = 1, and a+b = 1 or a+b = -1.
Consider two cases:
Case 1:
{a−b=1a+b=1
2a=2,a=1
{a=1b=0
Case 2:
{a−b=1a+b=−1
2a=0,a=0
{a=0b=−1
Our two solutions are a,b=(1,0) and a,b=(0,−1).