+0  
 
+1
504
2
avatar

Solve 4^x + 2^x + 1 = 111.

 Dec 4, 2020
 #1
avatar
0

 so first we can simplify $4^x$ into $2^2x$. So $2^2x$+$2^x$+$1$=$111$, next is $2^2x$+$2^x$=$110$, add so that it is $2^3x=110, take log on both sides and you get 2.260453

 

pls check if I am correct and don't submit answer until verify

 Dec 4, 2020
 #2
avatar+33652 
+2

Let \(u = 2^x\), then we have \(u^2+u+1=111\), or \(u^2 + u - 110 = 0 \) or \((u - 10)(u + 11) = 0\)

 

Assuming ony a real number solution for x means we want u = 10 and \(x=\frac{\ln(10)}{\ln(2)}\) 

 Dec 5, 2020

0 Online Users