Let x and y be real numbers such that 2(x^2 + y^2) = x + y + 1. Find the maximum value of x - y.
I believe this is correct.....
2 (x^2 + y^2) = x + y + 1
2x^2 - x + 2y^2 - y = 1 complete the square on x ,y
2(x^2 - (1/2)x + 1/16) + 2(y^2 - (1/2)y + 1/16) = 1 + 1/4
2 ( x - 1/4)^2 + 2 (y - 1/4)^2 = 5/4 divide through by 2
(x - 1/4)^2 + (y -1/4)^2 = 5/8
We have a circle centered at ( 1/4 , 1/4) with a radius of sqrt (5/8)
x - y will be maxed when
x = rcos(-45°) and y = r cos (-45°)
x = sqrt (5/8)(sqrt (1/2) = sqrt (5) / sqrt (16) = sqrt 5/4
y = sqrt (5/8) (-sqrt (1/2)) = -sqrt (5) / sqrt (16) = -sqrt (5)/4
So
x - y max = (sqrt (5) - - sqrt (5) ] / 4 = 2sqrt (5) / 4 = sqrt (5) / 2