Solve for the variable x in terms of y and z, assuming y \neq \frac{1}{2}: xy + x = \frac{3x + 2y + z + y + 2z}{3}
xy+x=3x+2y+z+y+2z3xy+x=x+2y3+z3+y3+2z3xy+x=x+y+zxy=y+zx=y+zy