Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
299
2
avatar

Given that

1/x + 1/y = 1/3

xy + x + y = 4

 

Compute x^2*y + x*y^2.

 Apr 15, 2022
 #1
avatar+580 
+3

G'day mate, 

 

"y" in this case is "a", I accidentally used "a" throughout, sorry!!!!!

 

[1x+1a=13xa+x+a=4]

 

Plugthesolutionsx=3a3aintoxa+x+a=4

 

We get a = a=12+i112.and.a=12i112

 

Plugthesolutionsa=12i112,a=12+i112into1x+1a=13

 

That gives x=12+112iandx=12112i

 

So now we have our values for (x, y): (x=12+112i,y=12i112x=12112i,y=12+i112)

 

Plugging that in: x2y+xy2:

 

(12+112i)2(12112i)+(12+112i)(12112i)2=3

 

(12112i)2(12+112i)+(12112i)(12+112i)2=3

 

So the answer is 3.

 

 

-Vinculum 

 

smileysmileysmiley

 Apr 15, 2022
 #2
avatar+130466 
+2

1/x + 1/y  =  1/3     ⇒   (x + y) / xy  =   1/3   ⇒  (x + y)  = (1/3)xy  ⇒ 3(x + y) = xy

 

And

xy + ( x + y) = 4

3xy + 3(x + y) = 12

3xy + xy = 12

4xy = 12

xy  = 3

 

Since (x +y) / xy  =  1/3   this implies that  (x + y)   =1

 

So

 

x^2y  + y^2x   =

 

xy ( x + y)   =

 

3 ( 1)   = 3

 

 

cool cool cool

 Apr 15, 2022

3 Online Users