G'day mate,
"y" in this case is "a", I accidentally used "a" throughout, sorry!!!!!
[1x+1a=13xa+x+a=4]
Plugthesolutionsx=−3a3−aintoxa+x+a=4
We get a = a=12+i√112.and.a=12−i√112
Plugthesolutionsa=12−i√112,a=12+i√112into1x+1a=13
That gives x=12+√112iandx=12−√112i
So now we have our values for (x, y): (x=12+√112i,y=12−i√112x=12−√112i,y=12+i√112)
Plugging that in: x2⋅y+x⋅y2:
(12+√112i)2(12−√112i)+(12+√112i)(12−√112i)2=3
(12−√112i)2(12+√112i)+(12−√112i)(12+√112i)2=3
So the answer is 3.
-Vinculum