+0  
 
0
423
1
avatar

The quadratic 2x^2 - 3x + 27 = -4 has two imaginary roots. What is the sum of the squares of these roots? Express your answer as a decimal rounded to the nearest hundredth.

 Mar 14, 2021
 #1
avatar+14997 
+1

War die Summe der Quadrate diese Wurzeln?

 

Hallo Gast!

 

\(2x^2 - 3x + 27 = -4\\2x^2-3x+31=0\)

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

\(x = {3 \pm \sqrt{9-248} \over 2\cdot 2}\)

\(x = {3 \pm \sqrt{-239} \over 4}\)

\(\color{blue}x=(3\pm15.4596i)/4\)

\(x_1^2=(-230+92.7576i)/16\\ x_2^2=(-230-92.7576i)/16\)

\(\color{blue}x_1^2+x_2^2=-28.75\)

laugh  !

 Mar 14, 2021
edited by asinus  Mar 14, 2021

1 Online Users