\(\:z=\frac{1}{2}-i\frac{\sqrt{3}}{2}\)
so \(z^{12}+\:\frac{1}{z^{12}}\) i belive is 2
z + 1/z = 1
(z + 1/z)^2 = 1^2
z^2 + 2 + (1/z)^2 = 1
z^2 + 1/z^2 = -1
(z + 1/z)^4 = 1^4
z^4 + 4z^2 + 6 + 4/z^2 + 1/z^4 = 1
z^4 + 4 (z^2 + 1/z^2) + 6 + 1/z^4 = 1
z^4 + 1/z^4 - 4 + 6 = 1
z^4 + 1/z^4 = -1
(z + 1/z)^6 = 1^6
z^6 + 6z^4 + 15z^2 + 20 + 15/z^2 + 6/z^4 + 1/z^6 = 1
z^6 + 1/z^6 + 15 ( z^2 + 1/z^2) + 6(z^4 + 1/z^4) + 20 =1
z^6 + 1/z^6 + 15*-1 + 6*-1 + 20 = 1
z^6 + 1/z^6 -1 = 1
z^6 + 1/z^6 = 2
(z^6 + 1/z^6) ( z^6 + 1/z^6) = 2 * 2
z^12 + 2 ( z^6 * ( 1/z^6) ) + 1/z^12 = 4
z^12 + 2 + 1/z^12 = 4
z^12 + 1/z^12 = 2