We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
176
2
avatar+38 

If $x-y=15$ and $xy=4$, what is the value of $x^2+y^2$?

 Dec 28, 2018
 #1
avatar+5226 
+3

\((x-y)^2 = (x^2 + y^2) - 2xy\\ x^2 + y^2 = (x-y)^2 + 2xy = \\ 225+8 = 233\)

.
 Dec 28, 2018
 #2
avatar+721 
-1

\((x-y)^2=(x^2+y^2)-2xy\)

Substituting our given numbers,

\(15^2=(x^2+y^2)-2(4), 225=(x^2+y^2)-8, x^2+y^2=233\)

 

You are very welcome!

:P

 Dec 28, 2018

9 Online Users