Let f(x)=x^2-6x+4 and let g(f(x))=2x+3. What is the sum of all possible values of g(8)?
Let's find what value(s) of x make f(x) = 8
f(x) = 8
x2 - 6x + 4 = 8
x2 - 6x - 4 = 0
By the Quadratic formula,
\(x\ =\ \frac{6\pm\sqrt{(-6)^2-4(1)(-4)}}{2(1)}\ =\ \frac{6\pm\sqrt{52}}{2}\ =\ \frac{6\pm2\sqrt{13}}{2}\ =\ 3\pm\sqrt{13}\)
And so....
\(f(3+\sqrt{13})=8\) and \(f(3-\sqrt{13})=8\)
First let's plug in 3 + √13 for x into the function g( f(x) ) = 2x + 3
\(g(\ 8\ )\ =\ g(\ f(3+\sqrt{13})\ )\ =\ 2(3+\sqrt{13})+3\ =\ 9+2\sqrt{13}\)
Next let's plug in 3 - √13
\(g(\ 8\ )\ =\ g(\ f(3-\sqrt{13})\ )\ =\ 2(3-\sqrt{13})+3\ =\ 9-2\sqrt{13}\)
And so the sum of all the possible values of g(8) is:
\((9+2\sqrt{13})\ +\ (9-2\sqrt{13})\ =\ 18\) .