Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1524
7
avatar

Compute the sum 2123+2234+2345+

 Sep 23, 2017

Best Answer 

 #4
avatar+26396 
+2

Algebra

Compute the sum 2123+2234+2345+

 

2123+2234+2345+2456+ +2n(n+1)(n+2)+= ?sn=2123+2234+2345+2456+ +2n(n+1)(n+2)

 

Formula:

in general: 1n(n+d)=1d(1n1n+d)we need:1(n+1)(n+2)=1n+11n+21n(n+1)=1n1n+11n(n+2)=12(1n1n+2)

 

we rearrange:

2n(n+1)(n+2)=2n×1(n+1)(n+2)=2n×(1n+11n+2)=2n×1n+12n×1n+2=2×(1n1n+1)2×12×(1n1n+2)=2n2n+11n+1n+22n(n+1)(n+2)=1n2n+1+1n+2

 

telescoping series

sn=1122+13+1223+14+1324+15+1425+16+1n22n1+1n+1n12n+1n+1+1n2n+1+1n+2

 

The part of each term cancelling with part of the next two diagonal terms:

Example:

1323+13=01424+14=01525+15=01n2n+1n=0

 

So sn is, we have all black terms left :

sn=1122+12+1n+12n+1+1n+2sn=121n+1+1n+2

 

 limn1n+1=0 and limn1n+2=0

 

limnsn=120+0=12

 

2123+2234+2345+2456+ +2n(n+1)(n+2)+= 12

 

 

laugh

 Sep 25, 2017
edited by heureka  Sep 3, 2018
 #1
avatar
0

∑[2/(n(n+1)(n+2)), n=1 to 1000] =0.49999.......converges to 1/2.

 Sep 24, 2017
 #2
avatar+118703 
+1

guest there really is not a lot of point posting if you cannot give any working.

Melody  Sep 24, 2017
 #3
avatar+118703 
0

I am just displaying the question better. 

 

2123+2234+2345+

 Sep 24, 2017
 #4
avatar+26396 
+2
Best Answer

Algebra

Compute the sum 2123+2234+2345+

 

2123+2234+2345+2456+ +2n(n+1)(n+2)+= ?sn=2123+2234+2345+2456+ +2n(n+1)(n+2)

 

Formula:

in general: 1n(n+d)=1d(1n1n+d)we need:1(n+1)(n+2)=1n+11n+21n(n+1)=1n1n+11n(n+2)=12(1n1n+2)

 

we rearrange:

2n(n+1)(n+2)=2n×1(n+1)(n+2)=2n×(1n+11n+2)=2n×1n+12n×1n+2=2×(1n1n+1)2×12×(1n1n+2)=2n2n+11n+1n+22n(n+1)(n+2)=1n2n+1+1n+2

 

telescoping series

sn=1122+13+1223+14+1324+15+1425+16+1n22n1+1n+1n12n+1n+1+1n2n+1+1n+2

 

The part of each term cancelling with part of the next two diagonal terms:

Example:

1323+13=01424+14=01525+15=01n2n+1n=0

 

So sn is, we have all black terms left :

sn=1122+12+1n+12n+1+1n+2sn=121n+1+1n+2

 

 limn1n+1=0 and limn1n+2=0

 

limnsn=120+0=12

 

2123+2234+2345+2456+ +2n(n+1)(n+2)+= 12

 

 

laugh

heureka Sep 25, 2017
edited by heureka  Sep 3, 2018
 #5
avatar+118703 
+2

Thanks Heureka   laugh

Melody  Sep 25, 2017
 #6
avatar+130466 
+2

Nice, heureka.....!!!!

 

 

cool cool cool

 Sep 25, 2017
 #7
avatar+26396 
+3

Thank you Melody and CPhill

 

laughlaughlaugh

 Sep 26, 2017

2 Online Users

avatar