+0  
 
0
491
7
avatar

Compute the sum $$\frac{2}{1 \cdot 2 \cdot 3} + \frac{2}{2 \cdot 3 \cdot 4} + \frac{2}{3 \cdot 4 \cdot 5} + \cdots$$

Guest Sep 23, 2017

Best Answer 

 #4
avatar+20038 
+2

Algebra

Compute the sum \(\mathbf{\frac{2}{1 \cdot 2 \cdot 3} + \frac{2}{2 \cdot 3 \cdot 4} + \frac{2}{3 \cdot 4 \cdot 5} + \cdots}\)

 

\(\begin{array}{lcll} \mathbf{ \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \mathbf{ ? } } \\\\ \begin{array}{|lcll|} \hline s_n = \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} \\ \hline \end{array} \\ \end{array}\\\)

 

Formula:

\(\begin{array}{|lcll|} \hline \text{in general}:\ \frac{1}{n(n+d)} = \frac{1}{d}\left(\frac{1}{n}- \frac{1}{n+d} \right) \\ \hline \\ \begin{array}{lrcll} \text{we need}: & \dfrac{1}{(n+1)(n+2)} &=& \dfrac{1}{n+1}-\dfrac{1}{n+2} \\ & \dfrac{1}{n(n+1)} &=& \dfrac{1}{n}-\dfrac{1}{n+1} \\ & \dfrac{1}{n(n+2)} &=& \dfrac{1}{2} \left( \dfrac{1}{n}-\dfrac{1}{n+2} \right) \\ \end{array} \\ \hline \end{array}\)

 

we rearrange:

\(\begin{array}{|rcll|} \hline \dfrac{2}{n \cdot (n+1) \cdot (n+2)} \\\\ &=& \dfrac{2}{n}\times \dfrac{1}{(n+1) \cdot (n+2)} \\\\ &=& \dfrac{2}{n}\times \left( \dfrac{1}{n+1}-\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{2}{n}\times \dfrac{1}{n+1} - \dfrac{2}{n}\times \dfrac{1}{n+2} \\\\ &=& 2\times \left(\dfrac{1}{n}-\dfrac{1}{n+1} \right)- 2\times \dfrac{1}{2} \times \left(\dfrac{1}{n} -\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{2}{n} - \dfrac{2}{n+1} -\dfrac{1}{n} + \dfrac{1}{n+2} \\\\ \mathbf{\dfrac{2}{n \cdot (n+1) \cdot (n+2)} } & \mathbf{=} & \mathbf{ \dfrac{1}{n} - \dfrac{2}{n+1} + \dfrac{1}{n+2} } \\ \hline \end{array}\)

 

telescoping series

\(\begin{array}{|rcll|} \hline s_n &=& \mathbf{\dfrac{1}{1}} &\mathbf{-}& \mathbf{\dfrac{2}{2}} &\color{red}+& \color{red}\dfrac{1}{3} \\\\ &\mathbf{+}& \mathbf{\dfrac{1}{2}} &\color{red}-& \color{red}\dfrac{2}{3} &\color{blue}+& \color{blue}\dfrac{1}{4} \\\\ &\color{red}+& \color{red}\dfrac{1}{3} &\color{blue}-& \color{blue}\dfrac{2}{4} &\color{red}+& \color{red}\dfrac{1}{5} \\\\ &\color{blue}+& \color{blue}\dfrac{1}{4} &\color{red}-& \color{red}\dfrac{2}{5} &\color{green}+& \color{green}\dfrac{1}{6} \\\\ && \ldots \\\\ &+\color{red}& \color{red}\dfrac{1}{n-2} &\color{green}-& \color{green}\dfrac{2}{n-1} &\color{red}+& \color{red}\dfrac{1}{n} \\\\ &\color{green}+& \color{green}\dfrac{1}{n-1} &\color{red}-& \color{red}\dfrac{2}{n} &\mathbf{+}& \mathbf{\dfrac{1}{n+1}} \\\\ &\color{red}+& \color{red}\dfrac{1}{n} &\mathbf{-}& \mathbf{\dfrac{2}{n+1}} &\mathbf{+}& \mathbf{\dfrac{1}{n+2}} \\ \hline \end{array}\)

 

The part of each term cancelling with part of the next two diagonal terms:

Example:

\(\begin{array}{|lcll|} \hline \frac{1}{3}-\frac{2}{3}+\frac{1}{3} = 0 \\ \frac{1}{4}-\frac{2}{4}+\frac{1}{4} = 0 \\ \frac{1}{5}-\frac{2}{5}+\frac{1}{5} = 0 \\ \ldots \\ \frac{1}{n}-\frac{2}{n} + \frac{1}{n} = 0 \\ \hline \end{array}\)

 

So \(s_n\) is, we have all black terms left :

\(\begin{array}{|rcll|} \hline s_n &=& \dfrac{1}{1}-\dfrac{2}{2}+\dfrac{1}{2} + \dfrac{1}{n+1} - \dfrac{2}{n+1} + \dfrac{1}{n+2} \\\\ \mathbf{s_n} &\mathbf{=}& \mathbf{\dfrac{1}{2} - \dfrac{1}{n+1} + \dfrac{1}{n+2}} \\ \hline \end{array} \)

 

 \(\lim \limits_{n\to \infty} { \dfrac{1}{n+1}} = 0 \quad \text{ and } \quad \lim \limits_{n\to \infty} { \dfrac{1}{n+2} } = 0 \)

 

\( \begin{array}{|rcll|} \hline \lim \limits_{n\to \infty} s_n &=& \dfrac{1}{2} - 0 + 0 \\ &=& \dfrac{1}{2} \\ \hline \end{array} \)

 

\(\begin{array}{lcll} \mathbf{ \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \mathbf{ \dfrac{1}{2} } } \\ \end{array}\\\)

 

 

laugh

heureka  Sep 25, 2017
edited by heureka  Sep 3, 2018
 #1
avatar
0

∑[2/(n(n+1)(n+2)), n=1 to 1000] =0.49999.......converges to 1/2.

Guest Sep 24, 2017
 #2
avatar+93691 
+1

guest there really is not a lot of point posting if you cannot give any working.

Melody  Sep 24, 2017
 #3
avatar+93691 
0

I am just displaying the question better. 

 

\(\frac{2}{1 \cdot 2 \cdot 3} + \frac{2}{2 \cdot 3 \cdot 4} + \frac{2}{3 \cdot 4 \cdot 5} + \cdots\)

Melody  Sep 24, 2017
 #4
avatar+20038 
+2
Best Answer

Algebra

Compute the sum \(\mathbf{\frac{2}{1 \cdot 2 \cdot 3} + \frac{2}{2 \cdot 3 \cdot 4} + \frac{2}{3 \cdot 4 \cdot 5} + \cdots}\)

 

\(\begin{array}{lcll} \mathbf{ \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \mathbf{ ? } } \\\\ \begin{array}{|lcll|} \hline s_n = \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} \\ \hline \end{array} \\ \end{array}\\\)

 

Formula:

\(\begin{array}{|lcll|} \hline \text{in general}:\ \frac{1}{n(n+d)} = \frac{1}{d}\left(\frac{1}{n}- \frac{1}{n+d} \right) \\ \hline \\ \begin{array}{lrcll} \text{we need}: & \dfrac{1}{(n+1)(n+2)} &=& \dfrac{1}{n+1}-\dfrac{1}{n+2} \\ & \dfrac{1}{n(n+1)} &=& \dfrac{1}{n}-\dfrac{1}{n+1} \\ & \dfrac{1}{n(n+2)} &=& \dfrac{1}{2} \left( \dfrac{1}{n}-\dfrac{1}{n+2} \right) \\ \end{array} \\ \hline \end{array}\)

 

we rearrange:

\(\begin{array}{|rcll|} \hline \dfrac{2}{n \cdot (n+1) \cdot (n+2)} \\\\ &=& \dfrac{2}{n}\times \dfrac{1}{(n+1) \cdot (n+2)} \\\\ &=& \dfrac{2}{n}\times \left( \dfrac{1}{n+1}-\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{2}{n}\times \dfrac{1}{n+1} - \dfrac{2}{n}\times \dfrac{1}{n+2} \\\\ &=& 2\times \left(\dfrac{1}{n}-\dfrac{1}{n+1} \right)- 2\times \dfrac{1}{2} \times \left(\dfrac{1}{n} -\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{2}{n} - \dfrac{2}{n+1} -\dfrac{1}{n} + \dfrac{1}{n+2} \\\\ \mathbf{\dfrac{2}{n \cdot (n+1) \cdot (n+2)} } & \mathbf{=} & \mathbf{ \dfrac{1}{n} - \dfrac{2}{n+1} + \dfrac{1}{n+2} } \\ \hline \end{array}\)

 

telescoping series

\(\begin{array}{|rcll|} \hline s_n &=& \mathbf{\dfrac{1}{1}} &\mathbf{-}& \mathbf{\dfrac{2}{2}} &\color{red}+& \color{red}\dfrac{1}{3} \\\\ &\mathbf{+}& \mathbf{\dfrac{1}{2}} &\color{red}-& \color{red}\dfrac{2}{3} &\color{blue}+& \color{blue}\dfrac{1}{4} \\\\ &\color{red}+& \color{red}\dfrac{1}{3} &\color{blue}-& \color{blue}\dfrac{2}{4} &\color{red}+& \color{red}\dfrac{1}{5} \\\\ &\color{blue}+& \color{blue}\dfrac{1}{4} &\color{red}-& \color{red}\dfrac{2}{5} &\color{green}+& \color{green}\dfrac{1}{6} \\\\ && \ldots \\\\ &+\color{red}& \color{red}\dfrac{1}{n-2} &\color{green}-& \color{green}\dfrac{2}{n-1} &\color{red}+& \color{red}\dfrac{1}{n} \\\\ &\color{green}+& \color{green}\dfrac{1}{n-1} &\color{red}-& \color{red}\dfrac{2}{n} &\mathbf{+}& \mathbf{\dfrac{1}{n+1}} \\\\ &\color{red}+& \color{red}\dfrac{1}{n} &\mathbf{-}& \mathbf{\dfrac{2}{n+1}} &\mathbf{+}& \mathbf{\dfrac{1}{n+2}} \\ \hline \end{array}\)

 

The part of each term cancelling with part of the next two diagonal terms:

Example:

\(\begin{array}{|lcll|} \hline \frac{1}{3}-\frac{2}{3}+\frac{1}{3} = 0 \\ \frac{1}{4}-\frac{2}{4}+\frac{1}{4} = 0 \\ \frac{1}{5}-\frac{2}{5}+\frac{1}{5} = 0 \\ \ldots \\ \frac{1}{n}-\frac{2}{n} + \frac{1}{n} = 0 \\ \hline \end{array}\)

 

So \(s_n\) is, we have all black terms left :

\(\begin{array}{|rcll|} \hline s_n &=& \dfrac{1}{1}-\dfrac{2}{2}+\dfrac{1}{2} + \dfrac{1}{n+1} - \dfrac{2}{n+1} + \dfrac{1}{n+2} \\\\ \mathbf{s_n} &\mathbf{=}& \mathbf{\dfrac{1}{2} - \dfrac{1}{n+1} + \dfrac{1}{n+2}} \\ \hline \end{array} \)

 

 \(\lim \limits_{n\to \infty} { \dfrac{1}{n+1}} = 0 \quad \text{ and } \quad \lim \limits_{n\to \infty} { \dfrac{1}{n+2} } = 0 \)

 

\( \begin{array}{|rcll|} \hline \lim \limits_{n\to \infty} s_n &=& \dfrac{1}{2} - 0 + 0 \\ &=& \dfrac{1}{2} \\ \hline \end{array} \)

 

\(\begin{array}{lcll} \mathbf{ \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \mathbf{ \dfrac{1}{2} } } \\ \end{array}\\\)

 

 

laugh

heureka  Sep 25, 2017
edited by heureka  Sep 3, 2018
 #5
avatar+93691 
+2

Thanks Heureka   laugh

Melody  Sep 25, 2017
 #6
avatar+90116 
+2

Nice, heureka.....!!!!

 

 

cool cool cool

CPhill  Sep 25, 2017
 #7
avatar+20038 
+3

Thank you Melody and CPhill

 

laughlaughlaugh

heureka  Sep 26, 2017

36 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.