Find the smallest value of x in (x^2 + 10x + 25 = 64).
Hello Guest!
\(x^2 + 10x + 25 = 64\\ x^2+10x-39=0\)
p q
\(x=-\frac{p}{2}\pm \sqrt{(\frac{p}{2})^2-q}\\ x=-\frac{10}{2}\pm \sqrt{(\frac{10}{2})^2+39}\\ x=-5\pm 8\\ x\in\{-13,3\}\)
The smallest value of x in (x^2 + 10x + 25 = 64) is - 13.
!
There is another way to solve this problem. Notice that the left side is the square of a binomial.
\((x + 5)^2 = 64\)
\(x + 5 = 8 \qquad x + 5 = -8\)
x = 3 or -13.