+0  
 
0
327
2
avatar

Find the smallest value of x such that x^2 + 10x + 25 = 64.

 Feb 14, 2022
 #1
avatar+14995 
+1

Find the smallest value of x in (x^2 + 10x + 25 = 64).

 

Hello Guest!

 

\(x^2 + 10x + 25 = 64\\ x^2+10x-39=0\)

          p          q

\(x=-\frac{p}{2}\pm \sqrt{(\frac{p}{2})^2-q}\\ x=-\frac{10}{2}\pm \sqrt{(\frac{10}{2})^2+39}\\ x=-5\pm 8\\ x\in\{-13,3\}\)

The smallest value of x in (x^2 + 10x + 25 = 64) is - 13.

laugh  !
 

 Feb 14, 2022
edited by asinus  Feb 14, 2022
 #2
avatar+1223 
+2

There is another way to solve this problem. Notice that the left side is the square of a binomial.

 

\((x + 5)^2 = 64\)

\(x + 5 = 8 \qquad x + 5 = -8\)

x = 3 or -13.

 Feb 14, 2022

3 Online Users

avatar
avatar