+0  
 
0
3
1
avatar+1323 

Solve the inequality (x - 2)(x + 6) \le (x - 2)(x + 5). Write your answer in interval notation.

 Aug 12, 2024
 #1
avatar+1790 
+1

We don't have the expand everything, as we can just use factoring to our advantage. 

Moving all terms to the right side of the equation, we get

\( (x - 2)(x + 6) - (x - 2)(x + 5) \leq 0\)

 

Now, since both terms have x- 2, we can factor it out to get

\((x-2)(x+6 - (x+5)) \le 0\\ (x-2)(x+6-x-5) \leq 0 \\ x-2 \leq 0\)

 

Isolating x from the equation, we get

\(x \le 2\)

 

In interval notation, this is \((-\infty, 2]\)

 

Thanks! :)

 Aug 12, 2024
edited by NotThatSmart  Aug 12, 2024

2 Online Users

avatar
avatar