The solutions of x(3x-7) = -1 may be expressed in the form m + sqrt n / p and m - sqrt n / p , where m, n, and p have a greatest common divisor of 1. Find m+n+p.
$3x^2 - 7x = -1$
$3x^2 - 7x + 1 = 0$
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 3} = \frac{7 \pm \sqrt{37}}{6}.$
$7+37+6 = \boxed{50}$
- Jimmy
$3x^2 - 7x = -1$
$3x^2 - 7x + 1 = 0$
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 3} = \frac{7 \pm \sqrt{37}}{6}.$
$7+37+6 = \boxed{50}$
- Jimmy