Here is my attempt.
To simplify the expression \(\dfrac{1}{\sqrt2+\sqrt3}+\dfrac{1}{\sqrt2-\sqrt3}\), we need to rationalize the denominators of the fractions.
Let's start by rationalizing the first fraction: \(\dfrac{1}{\sqrt2+\sqrt3}\cdot \dfrac{\sqrt2-\sqrt3}{\sqrt2-\sqrt3}= \dfrac{\sqrt2-\sqrt3}{2-3}=-(\sqrt2-\sqrt3)=-\sqrt2+\sqrt3\)
Next, rationalize the second fraction: \(\dfrac{1}{\sqrt2-\sqrt3}\cdot \dfrac{\sqrt2+\sqrt3}{\sqrt2+\sqrt3}= \dfrac{\sqrt2+\sqrt3}{2-3}=-(\sqrt2+\sqrt3)=-\sqrt2-\sqrt3\)
Now, add the two rationalized fractions together:\(-\sqrt2+\sqrt3+(-\sqrt2-\sqrt3)=-\sqrt2+\sqrt3-\sqrt2-\sqrt3=-2\sqrt2\)
Therefore, the simplified expression is \(-2\sqrt2\).