What is the sum of all real values of x that satisfy the equation (x-3)(x^2-x+4)=x-3+11?
According to Wolfram Alpha, the only real value that satisfies this equation is \(x = \dfrac13 \left(4 - \dfrac{\sqrt[3]{4}}{\sqrt[3]{113+3\sqrt{1419}}} + \sqrt[3]{2\left(113+3\sqrt{1419}\right)}\right)\).
Link: https://www.wolframalpha.com/input?i=%28x+-+3%29%28x%5E2+-+x+%2B+4%29+%3D+x+-+3+%2B+11
According to Wolfram Alpha, the only real value that satisfies this equation is \(x = \dfrac13 \left(4 - \dfrac{\sqrt[3]{4}}{\sqrt[3]{113+3\sqrt{1419}}} + \sqrt[3]{2\left(113+3\sqrt{1419}\right)}\right)\).
Link: https://www.wolframalpha.com/input?i=%28x+-+3%29%28x%5E2+-+x+%2B+4%29+%3D+x+-+3+%2B+11