+0  
 
-1
3
1
avatar+1694 

Find all the solutions to
\frac{x+4}{x+5} = \frac{x-3}{2} + \frac{x + 7}{5}

 Jul 16, 2024
 #1
avatar+1790 
+1

First, let's multiply by the LCM of the denominators. This will get rid of all the denominators and leave us with a nice clean sheet. We get

\(10\left(x+4\right)=5\left(x-3\right)\left(x+5\right)+2\left(x+7\right)\left(x+5\right)\)

 

Doing the painful process of multiplying out and combining all like terms, we get

\(10x+40=7x^2+34x-5\)

 

Moving all terms to one side and combining all like terms, we get

\(7x^2+24x-45=0\)

 

Now, applying the quadratic equation, we find that

\(x_{1,\:2}=\frac{-24\pm \:\sqrt{24^2-4\cdot \:7\left(-45\right)}}{2\cdot \:7}\)

 

The 2 values of x are \(x=\frac{3\left(\sqrt{51}-4\right)}{7},\:x=-\frac{3\left(4+\sqrt{51}\right)}{7}\)

 

Thanks! :)

 Jul 16, 2024
edited by NotThatSmart  Jul 16, 2024

2 Online Users

avatar
avatar