Find all the solutions to
\frac{x+4}{x+5} = \frac{x-3}{2} + \frac{x + 7}{5}
First, let's multiply by the LCM of the denominators. This will get rid of all the denominators and leave us with a nice clean sheet. We get
\(10\left(x+4\right)=5\left(x-3\right)\left(x+5\right)+2\left(x+7\right)\left(x+5\right)\)
Doing the painful process of multiplying out and combining all like terms, we get
\(10x+40=7x^2+34x-5\)
Moving all terms to one side and combining all like terms, we get
\(7x^2+24x-45=0\)
Now, applying the quadratic equation, we find that
\(x_{1,\:2}=\frac{-24\pm \:\sqrt{24^2-4\cdot \:7\left(-45\right)}}{2\cdot \:7}\)
The 2 values of x are \(x=\frac{3\left(\sqrt{51}-4\right)}{7},\:x=-\frac{3\left(4+\sqrt{51}\right)}{7}\)
Thanks! :)