+0

# Algebra

0
568
1

Let $$f(x) = \frac{x^2}{x^2 - 1}.$$Find the largest integer $n$ so that $f(2) \cdot f(3) \cdot f(4) \cdots f(n-1) \cdot f(n) < 1.98.$

$$Let \;\;\;f(x) = \frac{x^2}{x^2 - 1}.\;\;\;\\\text{Find the largest integer n so that }\\ f(2) \cdot f(3) \cdot f(4) \cdots f(n-1) \cdot f(n) < 1.98.$$

(I have just written the question properly)

Sep 23, 2017
edited by Melody  Sep 24, 2017

#1
+96104
+2

Note that 1.98  can be written as  1 + 98 / 100  = 198/100  = 99/50

Also  note that

x^2           =           x * x

______             __________

x^2 - 1             (x - 1) ( x + 1)

So we can write

2*2        3*3        4* 4                 (n - 1) ( n -1)       n *  n

____ *  _____  * _____ *  ....... *  ___________  * ___________ <  99 / 50

1 * 3      2 * 4      3 * 5                 (n - 2) ( n)           (n - 1) (n + 1)

Note that all the terms in red will be "cancelled" in the process and we will be left with

2 n     <    99

____       ___                 multiply both sides by (1/2)   and we have that

(n + 1)      50

n           <          99

______              ___

(n + 1)                100

And its obvious that the largest integer is   n  =  98

Sep 24, 2017