(csc(x)*cos(x)) divided by tan(x)+cot(x) =
[1/sinx) *cos(x)] / [ sinx/cosx + cosx/sinx] =
[ cot x ] / [ (sin^2 x + cos^2 x ) / sinx cosx ] =
[ cot x ] / [ 1 / sinx cosx ] =
[ cot x] [ sin x cos x ] =
[cosx / sin x ] [sin x cos x ] =
cos^2 (x)
\(\frac{\csc x\cos x}{\tan x + \cot x} \\~\\ =\frac{\frac{1}{\sin x}*\cos x}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}} \\~\\ =\frac{\cos x}{\sin x}*\frac{1}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}} \\~\\ =\frac{\cos x}{\sin x*\frac{\sin x}{\cos x} + \sin x* \frac{\cos x}{\sin x}} \\~\\ =\frac{\cos x}{\frac{\sin^2 x}{\cos x} + \cos x} \\~\\ =\frac{\cos x}{\frac{\sin^2 x}{\cos x} + \frac{\cos^2 x}{\cos x}} \\~\\ =\frac{\cos x}{\frac{\sin^2 x+\cos^2 x}{\cos x}} \\~\\ =\frac{\cos x}{\frac{1}{\cos x}} \\~\\ = \cos^2 x\)
:))
.