+0  
 
0
265
2
avatar

(csc(x)*cos(x)) divided by tan(x)+cot(x)

 

thank you!

Guest Mar 29, 2017
 #1
avatar+86943 
+3

(csc(x)*cos(x)) divided by tan(x)+cot(x)  =

 

[1/sinx) *cos(x)]  /  [ sinx/cosx  + cosx/sinx]  =

 

[  cot x  ]  /    [ (sin^2 x  + cos^2 x )  /  sinx cosx ] =

 

[ cot x ] / [ 1 / sinx cosx ] =

 

[ cot x] [ sin x cos x ]  =

 

[cosx / sin x ] [sin x cos x ]  =

 

cos^2 (x)

 

 

 

cool cool cool

CPhill  Mar 29, 2017
 #2
avatar+7096 
+3

\(\frac{\csc x\cos x}{\tan x + \cot x} \\~\\ =\frac{\frac{1}{\sin x}*\cos x}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}} \\~\\ =\frac{\cos x}{\sin x}*\frac{1}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}} \\~\\ =\frac{\cos x}{\sin x*\frac{\sin x}{\cos x} + \sin x* \frac{\cos x}{\sin x}} \\~\\ =\frac{\cos x}{\frac{\sin^2 x}{\cos x} + \cos x} \\~\\ =\frac{\cos x}{\frac{\sin^2 x}{\cos x} + \frac{\cos^2 x}{\cos x}} \\~\\ =\frac{\cos x}{\frac{\sin^2 x+\cos^2 x}{\cos x}} \\~\\ =\frac{\cos x}{\frac{1}{\cos x}} \\~\\ = \cos^2 x\)

 

:))

hectictar  Mar 29, 2017

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.