\(\frac{2x+4}{x^2+4x-5} = \frac{2-x}{x+5}\)
\((2x+4)(x+5) = (2-x)(x^2+4x-5)\)
\(2(x+2)(x+5) = -(x-2)(x+5)(x-1)\)
\(2(x+2) = -(x^2-3x+2)\)
\(2x+4 = -x^3+3x-2\)
\(x^2 - x + 6 = 0\)
\(\boxed{x = -3, 2}\)
.\(\frac{2x+4}{x^2+4x-5} = \frac{2-x}{x+5}\)
\((2x+4)(x+5) = (2-x)(x^2+4x-5)\)
\(2(x+2)(x+5) = -(x-2)(x+5)(x-1)\)
\(2(x+2) = -(x^2-3x+2)\)
\(2x+4 = -x^3+3x-2\)
\(x^2 - x + 6 = 0\)
\(\boxed{x = -3, 2}\)