Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
471
2
avatar

Solve (x+4)^3 + (x+5)^3 = (x+7)^3 + (x-2)^3

 Jun 21, 2021
 #1
avatar+287 
+2

I will avoid expanding any of the cubed expression.  Define a polynomial $p$ to be $p(x)=(x+4)^3 + (x+5)^3 - (x+7)^3 - (x-2)^3$.  Note that $p$ is at most quadratic.  Thus, $p(x)=ax^2+bx+c$ for some real $a,b,c$.  (In fact, $a,b,c$ are integers, but it's enough to say they are real.) We have
p(0)=c=43+5373(2)3=146p(1)=a+b+c=53+6383(1)3=170p(1)=ab+c=33+4363(3)3=98
Solving for $a$, $b$, and $c$, we have $a=12$, $b=-36$, and $c=-146$, giving $p(x)= 12x^2-36x-146$.   So
x=b±b24ac2a=32±16519.


 

 Jun 22, 2021
 #2
avatar+515 
+1

idk if this is right

 

x=9+5196,x=95196

 Jun 22, 2021

0 Online Users