For what real values of a is the expression (a + 3)/(a^3 - a) undefined? List your answers in increasing order separated by commas.
first of all lets evaluate a bit:
$ \frac{a+3}{a^3-a} $
$ \frac{a+3}{a\left(a^2-1\right) } $
$ \frac{a+3}{a\left(a+1\right)\left(a-1\right)} $
now, any rational expression will be undefined when the denominator is $=\: 0$ right? because dividing by 0 ( consider it like like something which does not exist ) just makes no sense. so we note that when $a\left(a+1\right)\left(a-1\right)=0$, that expression is undefined:
$a\left(a+1\right)\left(a-1\right)=0$
$ \left(a+1\right)\left(a-1\right)=\frac{0}{a} $
$ \left(a+1\right)\left(a-1\right)=0 $ $ \implies \begin{cases} a+1=0 \\ \ \ \ \ \text{and} \\ a-1=0 \end{cases} \implies \begin{cases} a=-1 \\ \ \ \text{and} \\ a=1 \end{cases} $
thus, whenever $\boxed{a=1,\: -1}$ the fraction becomes undefined